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Objective: Artificial intelligence-based computer-aided diagnosis (AI-CAD) is increasingly used in mammography. While the 
continuous scores of AI-CAD have been related to malignancy risk, the understanding of how to interpret and apply these 
scores remains limited. We investigated the positive predictive values (PPVs) of the abnormality scores generated by a deep 
learning-based commercial AI-CAD system and analyzed them in relation to clinical and radiological findings.
Materials and Methods: From March 2020 to May 2022, 656 breasts from 599 women (mean age 52.6 ± 11.5 years, 
including 0.6% [4/599] high-risk women) who underwent mammography and received positive AI-CAD results (Lunit Insight 
MMG, abnormality score ≥ 10) were retrospectively included in this study. Univariable and multivariable analyses were 
performed to evaluate the associations between the AI-CAD abnormality scores and clinical and radiological factors. The 
breasts were subdivided according to the abnormality scores into groups 1 (10–49), 2 (50–69), 3 (70–89), and 4 (90–100) 
using the optimal binning method. The PPVs were calculated for all breasts and subgroups.
Results: Diagnostic indications and positive imaging findings by radiologists were associated with higher abnormality 
scores in the multivariable regression analysis. The overall PPV of AI-CAD was 32.5% (213/656) for all breasts, including 213 
breast cancers, 129 breasts with benign biopsy results, and 314 breasts with benign outcomes in the follow-up or diagnostic 
studies. In the screening mammography subgroup, the PPVs were 18.6% (58/312) overall and 5.1% (12/235), 29.0% (9/31), 
57.9% (11/19), and 96.3% (26/27) for score groups 1, 2, 3, and 4, respectively. The PPVs were significantly higher in 
women with diagnostic indications (45.1% [155/344]), palpability (51.9% [149/287]), fatty breasts (61.2% [60/98]), and 
certain imaging findings (masses with or without calcifications and distortion).
Conclusion: PPV increased with increasing AI-CAD abnormality scores. The PPVs of AI-CAD satisfied the acceptable PPV range 
according to Breast Imaging-Reporting and Data System for screening mammography and were higher for diagnostic 
mammography. 
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INTRODUCTION

Mammography, the standard method for detecting 
breast cancer, has inherent limitations due to its two-
dimensional projectional nature. The sensitivity varies from 
60%–90% and is significantly affected by breast density 
[1,2]. Recently, artificial intelligence-based computer-
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MATERIALS AND METHODS

This retrospective study was approved by the Institutional 
Review Board of the Yongin Severance Hospital (IRB No. 
9-2022-0118), and the requirement for informed consent 
was waived. 

Study Population 
Between March 2020 and May 2022, 10900 mammograms 

were performed at our institution. Among them, 798 breasts 
from 728 patients with abnormal AI results (abnormality 
score ≥ 10 generated by an AI-CAD explained below) in 
screening and diagnostic mammograms were enrolled. We 
excluded patients with a history of breast cancer.

The AI-CAD scores were provided for the left and right 
breasts; therefore, we applied inclusion and exclusion 
criteria for each breast. We included 342 breasts that 
underwent biopsy or surgery, 194 that were stable for at 
least 12 months, and 120 with BI-RADS scores of 1 or 2 
on diagnostic ultrasound (US) and additional views. We 
excluded 117 breasts with incomplete assessment due 
to insufficient follow-up mammography in < 12 months, 
22 breasts that underwent neoadjuvant chemotherapy, 2 
breasts that developed interstitial mammoplasty, and 1 male 
breast. Finally, we included 656 breasts from 599 patients 
(mean age 52.6 ± 11.5 years) (Fig. 1), consisting of one 
mammogram from 569 patients and two mammograms from 
30 patients. Based on the AI results, we included both the 
unilateral and bilateral breasts in these mammograms.

Out of 599 patients (mean age 52.6 ± 11.5 years), 61 

aided diagnosis (AI-CAD) has been increasingly integrated 
into mammography, displaying a diagnostic accuracy 
comparable to or even superior to that of radiologists, 
while significantly enhancing the diagnostic performance of 
radiologists [3-7]. 

Contrary to traditional CAD algorithms that rely on 
radiologist-determined features, AI-CAD algorithms built 
on deep learning networks do not elucidate how they 
arrive at their final scores or results using a calculation 
process expressed in continuous numbers [8-10]. The score 
generated by AI-CAD is generally accepted as the likelihood 
of cancer, and most commercially available AI-CAD 
applications offer a heatmap denoting abnormality scores. 
Nevertheless, the importance of the score itself remains 
ambiguous, such as the clinical implications of higher 
and lower scores, compared to the comparatively intuitive 
and straightforward Breast Imaging-Reporting and Data 
System (BI-RADS) by the American College of Radiology 
(ACR). BI-RADS suggests representative imaging findings 
for each category based on the corresponding positive 
predictive values (PPVs); therefore, we hypothesized that 
a comprehensive analysis of abnormality scores from 
AI-CAD in relation to PPVs would help radiologists and 
clinicians better understand the clinical significance of the 
abnormality scores.

In this study, we evaluated the factors associated with 
the abnormality scores generated by commercial AI-CAD 
system and the PPVs of these scores according to the 
clinical and radiological characteristics of mammograms. 

From March 2020 to May 2022, a total of 10900 mammograms 
examined in a single institution

798 breasts from 728 patients with abnormal Al score (≥ 10)

656 breasts of 599 patients with abnormal Al score (≥ 10)

Exclusions
-   Breasts with insufficient follow-up of less than 
12 months or diagnostic studies (n = 117)

-   Breasts that underwent neoadjuvant 
chemotherapy (n = 22)

-   Breasts with interstitial mammoplasty (n = 2)
-   Male breast (n = 1)

Fig. 1. Study population. AI = artificial intelligence
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(10.2%) had a family history of breast cancer and 4 met the 
criteria for high risk for breast cancer, having two or more 
first-degree relatives diagnosed with breast cancer [11]. 

Image Analysis and AI-CAD Application
Mammograms were obtained using dedicated equipment 

(Pristina; GE Healthcare, Milwaukee, WI, USA). A senior 
radiologist (E-KK, with 24 years of experience in breast 
imaging) retrospectively reviewed the mammograms with 
AI-CAD results and recorded the mammographic findings 
correlating with the AI-detected area. Breast density was 
visually assessed based on the ACR BI-RADS 5th edition 
and mammographic findings were recorded in six groups: 
asymmetry, mass, mass with calcifications, calcifications 
only, distortions, and negative. 

We used a deep learning-based commercial AI-CAD 
program (Lunit Insight MMG; https://insight.lunit.io, version 
1.1.1.0 to 1.1.7.1) which was developed and validated 
through multinational studies [7,12,13]. In this program, 
the AI-CAD result is provided as two abnormality scores 
in percentages of 0%–100% per breast with a heatmap or 
grayscale map. An abnormality score of < 10 presents as 
“low” and is regarded as a test-negative result. Abnormality 
scores from 0 to 100, rounded to two decimal places, were 
obtained from the raw data. 

Statistical Analysis
Data are presented as medians (interquartile ranges) 

or frequencies with percentages (%), as appropriate. 
The P-value was calculated using the Mann–Whitney U 
test and the Kruskal–Wallis test to compare the median 
values. Univariable and multivariable regression analyses 
were performed to explore the associations between the 
abnormality scores and clinical factors. 

PPV was defined as the number of patients diagnosed 
as breast cancers per the number of patients whose 
mammograms got an abnormality score on AI-CAD more 
than 10. We employed the optimal binning method to 
categorize the continuous variables of the abnormality score 
into intervals. This procedure involves discretizing the scale 
variables by assigning their values to specific bins guided 
by a categorical variable. The optimal cutoff point was 
selected to maximize the difference in cancer prevalence 
among the score groups. The bins were categorized into four 
groups with optimal cutoff values of 50, 70, and 90. Groups 
1, 2, 3, and 4 had the scores of 10–49, 50–69, 70–89, 
and 90–99, respectively. Chi-square and proportion tests 

were conducted to calculate P-values and determine the 
statistical significance of differences between the groups.

Statistical analyses were performed using the SPSS 
software (version 26; IBM Corp., Armonk, NY, USA) and 
R software (version 3.6.0; http://cran.r-project.org/). 
Statistical significance was set at a two-sided P-value < 0.05 
was considered statistically significant.

RESULTS

Among the 656 breasts, 213 had malignant tumors, 
consisting of 186 invasive breast cancers, 25 ductal 
carcinomas in situ (DCIS), 1 malignant phyllodes tumor, 
and 1 mesenchymal tumor. Invasive cancers had higher 
median abnormality scores than DCIS (95 vs. 77, P < 0.001). 
The remaining 129 breasts had benign biopsy results, and 
314 breasts were stable at follow-up or were benign in the 
diagnostic study. The distribution of AI-CAD scores for the 
benign and malignant groups is shown in Figure 2. 

Nearly half of the mammography studies (312/656, 48%) 
were screened. Forty-four percent of the breasts (287/656) 
had subjective palpable symptoms, and 39% (255/656) 
underwent mammography with a metallic marker placed in the 
breast. Microcalcifications were the most common imaging 
findings (159/656, 24%), followed by masses (145/656, 
22%), asymmetry (115/656, 18%), microcalcifications 
(66/656, 10%), and distortion (13/656, 2%). Twenty-four 
percent of breasts showed no apparent findings.

25                50                75               100

Score

Benign

Cancer

Fig. 2. Distribution of the artificial intelligence-based computer-
aided diagnosis score in the benign and malignant groups.

https://insight.lunit.io
http://cran.r-project.org/
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Factors associated with AI-CAD Scores
Diagnostic mammography showed higher median 

abnormality scores than screening mammography (52 vs. 
26, respectively; P < 0.001). Palpable symptoms were also 
associated with higher median abnormality scores (P < 
0.001). Compared to dense breasts, fatty breasts tended to 
have higher scores (P < 0.001). Among the positive imaging 
findings, masses with microcalcifications had the highest 
abnormality scores, followed by masses, distortions, 
asymmetry, and microcalcifications (Table 1; all P < 0.001). 

In multivariable linear regression, diagnostic indications 
and all positive imaging findings deemed by a radiologist 
were significantly associated with abnormality scores 
(Table 2; all P < 0.001). From the standardized coefficients, 
masses with microcalcifications, followed by mass, distortion, 
microcalcifications, and asymmetry were highly associated 
with the abnormality scores. When we classified breasts as 
fatty and dense, the abnormality scores tended to increase in 
the fatty breasts (P = 0.053). 

PPV of the AI-CAD Score
The overall PPV of AI-CAD was 32.5% (213/656). When we 

divided the AI-CAD scores into four score groups using the 
optimal binning method, the PPVs increased significantly as 
the scores increased (P < 0.001). 

The overall PPV for screening mammography was 18.6% 

Table 1. Median abnormality scores assigned by AI-CAD according 
to clinical and radiological characteristics of the 656 breasts

Variable n (%)
Median score 

(IQR)
P*

Indication < 0.001
Screening 312 (48) 26 (15, 51)
Diagnostic 344 (52) 52 (21, 95)

Palpability < 0.001
Yes 287 (44) 61 (27, 97)
No 369 (56) 24 (15, 51)

Density < 0.001
Category A 16 (2) 61 (39, 99)
Category B   82 (13) 71 (26, 98)
Category C 347 (53) 32 (18, 76)
Category D 211 (32) 29 (16, 56)

Density (binary) < 0.001
Fatty   98 (15) 70 (26, 99)
Dense 558 (85) 31 (17, 66)

Finding < 0.001
Asymmetry 115 (18) 30 (17, 58)
Distortion 13 (2) 63 (30, 70)
Mass 145 (22) 74 (37, 97)
Mass with microcalcifications   66 (10)   98 (61, 100)
Microcalcifications only 159 (24) 33 (20, 61)
Negative 158 (24) 18 (13, 27)

*P-values are for comparing the median scores and were calculated 
using the Mann-Whitney U test for indication, palpability, and 
density and using the Kruskal-Wallis test for density and finding. 
AI-CAD = artificial intelligence-based computer-aided diagnosis, 
IQR = interquartile range

Table 2. Association between the abnormality score and clinical and radiological factors on univariable and multivariable linear regression

Variable
Univariable Multivariable

Unstandardized
P*

Unstandardized Standardized 
coefficients

P*
Coefficients SE Coefficients SE

Indication
Screening Ref Ref
Diagnostic 18.9 2.41 < 0.001   9.6 2.17 0.299 < 0.001

Palpability†

No Ref
Yes 25.4 2.34 < 0.001

Density
Fatty 18.8 3.46 < 0.001   5.9 3.01 0.181    0.053
Dense Ref Ref

Finding
Asymmetry 17.7 3.25 < 0.001 15.1 3.25 0.468 < 0.001
Distortion 31.4 7.65 < 0.001 30.6 7.54 0.948 < 0.001
Mass 43.6 3.05 < 0.001 38.1 3.24 1.182 < 0.001
Mass with microcalcifications 56.6 3.89 < 0.001 52.0 3.95 1.612 < 0.001
Microcalcifications only 20.8 2.98 < 0.001 20.5 2.93 0.637 < 0.001
Negative Ref Ref

*P-values were calculated using multivariable linear regression, †Palpability was excluded from the multivariable analysis due to its large 
overlap with diagnostic indications.
SE = standard error, Ref = reference category
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Table 3. PPVs for the four score groups according to clinical and radiological factors

Variable Group 1 (10–49) Group 2 (50–69) Group 3 (70–89) Group 4 (90–99) Overall P*
Overall 9.3 (38/409) 33.8 (25/74) 66.0 (33/50) 95.1 (117/123) 32.5 (213/656) < 0.001
Indication

Screening 5.1 (12/235) 29.0 (9/31) 57.9 (11/19) 96.3 (26/27) 18.6 (58/312) < 0.001
Diagnostic 14.9 (26/174) 37.2 (16/43) 71.0 (22/31) 94.8 (91/96) 45.1 (155/344) < 0.001
P† 0.001 0.457 0.349 0.725 < 0.001

Palpability
Yes 16.0 (20/125) 47.1 (16/34) 69.7 (23/33) 94.7 (90/95) 51.9 (149/287) < 0.001
No 6.3 (18/284) 22.5 (9/40) 58.8 (10/17) 96.4 (27/28) 17.3 (64/369) < 0.001
P† 0.007 0.023 0.449 0.686 < 0.001

Density
Category A 16.7 (1/6) 75.0 (3/4) 100.0 (2/2) 100.0 (4/4) 62.5 (10/16)   0.038
Category B 20.0 (7/35) 66.7 (4/6) 77.8 (7/9) 100.0 (32/32) 61.0 (50/82) < 0.001
Category C 7.3 (16/218) 27.5 (11/40) 58.6 (17/29) 90.0 (54/60) 28.2 (98/347) < 0.001
Category D 9.3 (14/150) 29.2 (7/24) 70.0 (7/10) 100.0 (27/27) 26.1 (55/211) < 0.001
P† 0.105 0.076 0.501 0.085 < 0.001

Finding
Asymmetry 13.9 (11/79) 31.6 (6/19) 28.6 (2/7) 80.0 (8/10) 23.5 (27/115) < 0.001
Distortion 40.0 (2/5) 75.0 (3/4) 100.0 (2/2) 100.0 (2/2) 69.2 (9/13)   0.279
Mass 22.4 (11/49) 64.7 (11/17) 77.8 (21/27) 96.2 (50/52) 64.1 (93/145) < 0.001
Mass with microcalcifications 35.7 (5/14) 40.0 (2/5) 75.0 (3/4) 97.7 (42/43) 78.8 (52/66) < 0.001
Microcalcifications only 8.1 (9/111) 13.6 (3/22) 50.0 (5/10) 93.8 (15/16) 20.1 (32/159) < 0.001
Negative 0.0 (0/151) 0.0 (0/7) NA (0/0) NA (0/0) 0.0 (0/158) NA
P† 0.008 0.009 0.079 0.213 < 0.001

Data are presented as a percentage of the number of breasts.
*P-value calculated for the difference in PPV among score groups, †P-value calculated for difference in PPV between/among column 
categories in each variable (e.g., screening vs. diagnostic).
PPV = positive predictive value, NA = not applicable

(58/312), and the PPV for scores of 1, 2, 3, and 4 were 
5.1% (12/235), 29.0% (9/31), 57.9% (11/19), and 
96.3% (26/27), respectively (Table 3). The overall PPV for 
diagnostic mammography was 45.1% (155/344), which 
was much higher than that for screening indications (P < 
0.001). To note, breasts with palpable symptoms showed a 
higher PPV of 51.9% (149/287) compared to those without 
symptoms that showed a PPV of 17.3% (64/369, P < 0.001). 
Except for group 4, the abnormal score groups showed higher 
PPV on diagnostic mammography and palpable breasts.

Fatty breasts showed a higher PPV of 61.2% (60/98) 
than dense breasts, with a PPV of 27.4% (153/558, P < 
0.001). Among the positive imaging findings, masses 
with microcalcifications had the highest PPV (52/66, 
78.8%), followed by distortions (69.2%, 9/13), masses 
(64.1%, 93/145), asymmetry (23.5%, 27/115), and 
microcalcifications (20.1%, 32/159) (Table 3). In contrast, 
158 mammograms with negative imaging findings obtained 
by a radiologist had no cancer diagnosis.

Caution in Interpretation of the AI-CAD Score
The overall PPV of group 1 was 9.3% (38/409), which 

included 38 malignant cases, including 8 DCIS, 29 
invasive ductal carcinoma, and 1 malignant phyllodes tumor 
(Fig. 3). Explainable imaging findings, in the order of PPV, 
distortion, mass with calcifications, mass, asymmetry, and 
microcalcification showed a PPV of at least 8.1% (9/111).

In contrast, 6 benign cases were observed in group 4 
(Fig. 4). Four patients underwent a biopsy and were 
diagnosed with granulomatous mastitis, sclerosing adenosis, 
or acute/chronic inflammation. The other was a typically 
ruptured epidermal cyst on US, and the last was a grouped 
microcalcification that had been stable for more than 5 years. 

DISCUSSION

We found that the PPV of AI-CAD increased serially, 
depending on the abnormality score. We present evidence 
indicating that the continuous nature of abnormality 
scores generated by AI-CAD for mammography is related 
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Fig. 3. 63-year-old woman visited for screening. A, B: Right mediolateral oblique (A) and right craniocaudal mammograms (B) show 
asymmetry with architectural distortion at right upper outer portion. C: Screenshot of output of AI tool. AI localized area in the right 
outer breast, as depicted by region of interest color map. Tool assigned abnormality score of 29% to the right breast and of “low” to the 
left breast. Ultrasound-guided core biopsy revealed invasive ductal carcinoma. Case represents malignant pathology with relatively low AI 
score. AI = artificial intelligence

Fig. 4. 40-year-old woman visited due to right breast pain with lump. A, B: Right mediolateral oblique (A) and right craniocaudal 
mammograms (B) show mass opacity at right upper central portion with bb marker. C: Screenshot of output of AI tool. AI localized area 
in the right upper central breast, as depicted by region of interest color map. Tool assigned abnormality score of 98% to the right breast 
and of “low” to the left breast. Ultrasound-guided core biopsy revealed granulomatous mastitis. Case represents benign pathology with 
relatively high AI score. AI = artificial intelligence

A B C

A B C
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to the likelihood of breast cancer. In addition, the 
PPVs were within the acceptable range of medical audit 
recommendations for the BI-RADS.

In multivariable regression, imaging findings, 
especially masses with microcalcifications, followed by 
masses, distortions, and microcalcifications affected the 
abnormality score the most. The diagnostic indications 
were also associated with higher abnormality scores. Since 
a large overlap existed between the diagnostic indications 
of examinations and palpable symptoms, we excluded 
palpability from the multivariable regression analysis. When 
breast density was classified into fatty and dense groups, 
the scores showed an increasing trend in fatty breasts. As 
expected, easily discernible findings in fatty backgrounds 
seemed to have higher scores for AI-CAD, which was also 
observed in a previous study [14].

For screening mammography, the overall PPV of AI-CAD 
diagnosis was 18.6%, which is between the recommended 
values for PPV1 (3%–8%) and PPV2 (20%–40%) in BI-RADS 
[15]. Although we could not evaluate the recall or abnormal 
interpretation rate of AI-CAD in our study population, it is 
known to be similar to that of radiologists in previous studies 
that analyzed historic cohorts [3]. When we divided the score 
groups into 1, 2, 3, and 4 with cutoff values calculated using 
the optimal binning method, the PPV were 5.1%, 29.0%, 
57.9%, and 96.3%, respectively, which corresponded to the 
recommended PPV for BI-RADS 4a, 4b, 4c, and 5. 

For diagnostic mammography, the overall PPV of AI-
CAD diagnosis was 45.1% and 51.9% for women with 
palpable lumps, which was much higher than that of 
the screening population. This was in line with the BI-
RADS recommendation of 15%–40% for PPV2 in the case 
of diagnostic mammography and 25%–50% for PPV2 for 
palpable lumps. Even in the lower score groups of 1 or 
2, which suggest equivocal imaging findings, we could 
rely more on the AI score for diagnostic mammography or 
mammography in patients with palpable lesions. 

Recent meta-analyses have reported that standalone AI-
CAD showed a performance similar to or better than that 
of radiologists [3,16]. In our study, we showed that the 
scale of abnormality scores correlated well with the PPVs, 
and their values satisfied the BI-RADS recommendations. 
In addition, we confirmed that when a radiologist finds 
no explainable imaging findings for AI-CAD detection, the 
actual likelihood of a cancer diagnosis could be extremely 
low. We hope that these findings will provide evidence for 
standalone AI-CAD and contribute to our understanding of 

AI-CAD scores. 
This study had some limitations. First, the use of a single 

AI-CAD software may limit the broader applicability of this 
study’s findings to AI from other vendors and developers. 
Secondly, our study pertains to the calibration analysis of 
the “abnormality score,” which is the probability generated 
by an algorithm-specific AI influenced by its training 
data. Our primary objective was to group these scores to 
provide a clear understanding of their significance. We 
discovered that our score groupings aligned with the BI-
RADS recommendations. Although this result can be a useful 
reference for radiologists, its generalizability may have 
limitations. Additionally, although calibration is a critical 
aspect in interpreting AI results, a broader perspective 
should encompass the quantification of uncertainty. 
Uncertainty quantification measures the reliability of an AI 
prediction and is distinct from calibration. Unfortunately, 
for this study, we did not have access to algorithm-based 
data for uncertainty analysis. Future studies should delve 
further into calibration analysis and its implications to 
enhance the reliability of AI predictions in clinical decision 
making. Third, the dataset was collected retrospectively 
from a single institution and included only mammography 
with abnormal results identified by AI-CAD to focus on 
suspicious characteristics. Additionally, to include as many 
consecutive studies as possible, we used diagnostic study 
results from the same day, including US and an additional 
view of mammography, as a benign standard reference 
without pursuing additional follow-up. This approach may 
have led to an underestimation of cancer, with some cases 
possibly being overlooked. Finally, our study sample included 
all screening and diagnostic indications, and the screening 
population comprised only 48% of all mammography studies. 
The number of patients categorized by certain imaging 
findings, such as distortion, may not be sufficient to 
generalize the PPVs for each imaging finding.

In conclusion, the PPVs increased with increasing AI-CAD 
abnormality scores. The PPVs of AI-CAD were within the 
acceptable performance ranges suggested by the BI-RADS 
for screening mammography and were higher for diagnostic 
mammography.

Availability of Data and Material
The datasets generated or analyzed during the study are not 
publicly available since IRB approval is valid only for this 
research but are available from the corresponding author on 
reasonable request.
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