• Title/Summary/Keyword: AI network

Search Result 774, Processing Time 0.023 seconds

Analysis and Examination of Trends in Research on Medical Learning Support Tools: Focus on Problem-based Learning (PBL) and Medical Simulations

  • Yea, Sang-Jun;Jang, Hyun-Chul;Kim, An-Na;Kim, Sang-Kyun;Song, Mi-Young;Han, Chang-Hyun;Kim, Chul
    • The Journal of Korean Medicine
    • /
    • v.33 no.4
    • /
    • pp.60-68
    • /
    • 2012
  • Objectives: By grasping trends in research, technology, and general characteristics of learning support tools, this study was conducted to present a model for research on Korean Medicine (KM) to make use of information technology to support teaching and learning. The purpose is to improve the future clinical competence of medical personnel, which is directly linked to national health. Methods: With papers and patents published up to 2011 as the objects, 438 papers were extracted from "Web of Science" and 313 patents were extracted from the WIPS database (DB). Descriptive analysis and network analysis were conducted on the annual developments, academic journals, and research fields of the papers, patents searched were subjected to quantitative analysis per application year, nation, and technology, and an activity index (AI) was calculated. Results: First, research on medical learning support tools has continued to increase and is active in the fields of computer engineering, education research, and surgery. Second, the largest number of patent applications on medical learning support tools were made in the United States, South Korea, and Japan in this order, and the securement of remediation technology-centered patents, rather than basic/essential patents, seemed possible. Third, when the results of the analysis of research trends were comprehensively analyzed, international research on e-PBL- and medical simulation-centered medical learning support tools was seen to expand continuously to improve the clinical competence of medical personnel, which is directly linked to national health. Conclusions: The KM learning support tool model proposed in the present study is expected to be applicable to computer-based tests at KM schools and to be able to replace certain functions of national KM doctor license examinations once its problem DB, e-PBL, and TKM simulator have been constructed. This learning support tool will undergo a standardization process in the future.

Analyzing the Design Competition Entries for the Hoehyeon Section of Namsan from a Perspective of the Historic Urban Landscape (남산 회현자락 설계 공모 출품작에 대한 역사도시경관적 분석)

  • Seo, Young-Ai
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.43 no.4
    • /
    • pp.27-36
    • /
    • 2015
  • This study analyzed the characteristics of the entries at the design competition for the Hoehyeon section of Namsan from a perspective of the Historic Urban Landscape and made suggestions from them. Hoehyeon, located at the foot of Namsan, is the most changing site in the park and Seoul City Wall. Recent excavation of the old city walls of the Joseon Era has uncovered evidence of the Japanese occupation period, making it a site where park facilities in modern and contemporary history coexist. The frame analysis has been made by the concept of the Historic Urban Landscape, the methods of approach, specialists' discussion and the guidelines of the competition. The entries were analyzed by classification of the understanding of the spatiality and cultural diversity, the recognition of the periodic layers of time, and the design implementation, the preservation, the park plan, and the future management plan. From a perspective of an Historic Urban Landscape, this study has found that each entry placed priority on the objects for preservation and suggested creative involvement and comprehensive designs for the preservation and the park plan through the understanding of the spatiality and cultural diversity and the reflection of the periodic layers of time in the designs. This study provided two implications. Firstly, there was a possibility for new recognition and the methods of approach for preservation and development. Secondly, the basic plan for the Historic Landscape should be established through research and mapping for the preservation and management of objects in Seoul having valuable historic variability. Further study for resident participation and the process by network from public to private should be taken. This study looks forward to the consideration of the direction for the design plans of places with historic and cultural value.

USN's Efforts to Rebuild its Combat Power in an Era of Great Power Competition (강대국 간의 경쟁시대와 미 해군의 증강 노력)

  • Jung, Ho-Sub
    • Strategy21
    • /
    • s.44
    • /
    • pp.5-27
    • /
    • 2018
  • The purpose of this paper is to look at USN's efforts to rebuild its combat power in the face of a reemergence of great powers competition, and to propose some recommendations for the ROKN. In addition to the plan to augment its fleet towards a 355-ships capacity, the USN is pursuing to improve exponentially combat lethality(quality) of its existing fleet by means of innovative science and technology. In other words, the USN is putting its utmost efforts to improve readiness of current forces, to modernize maintenance facilities such as naval shipyards, and simultaneously to invest in innovative weapons system R&D for the future. After all, the USN seems to pursue innovations in advanced military Science & Technology as the best way to ensure continued supremacy in the coming strategic competition between great powers. However, it is to be seen whether the USN can smoothly continue these efforts to rebuild combat strength vis-a-vis its new competition peers, namely China and Russian navy, due to the stringent fiscal constraints, originating, among others, from the 2011 Budget Control Act effective yet. Then, it seems to be China's unilateral and assertive behaviors to expand its maritime jurisdiction in the South China Sea that drives the USN's rebuild-up efforts of the future. Now, some changes began to be perceived in the basic framework of the hitherto regional maritime security, in the name of declining sea control of the USN as well as withering maritime order based on international law and norms. However, the ROK-US alliance system is the most excellent security mechanism upon which the ROK, as a trading power, depends for its survival and prosperity. In addition, as denuclearization of North Korea seems to take significant time and efforts to accomplish in the years to come, nuclear umbrella and extended deterrence by the US is still noting but indispensible for the security of the ROK. In this connection, the naval cooperation between ROKN and USN should be seen and strengthened as the most important deterrents to North Korean nuclear and missile threats, as well as to potential maritime provocation by neighboring countries. Based on these observations, this paper argues that the ROK Navy should try to expand its own deterrent capability by pursuing selective technological innovation in order to prevent this country's destiny from being dictated by other powers. In doing so, however, it may be too risky for the ROK to pursue the emerging, disruptive innovative technologies such as rail gun, hypersonic weapon... etc., due to enormous budget, time, and very thin chance of success. This paper recommends, therefore, to carefully select and extensively invest on the most cost-effective technological innovations, suitable in the operational environments of the ROK. In particular, this paper stresses the following six areas as most potential naval innovations for the ROK Navy: long range precision strike; air and missile defense at sea; ASW with various unmanned maritime system (UMS) such as USV, UUV based on advanced hydraulic acoustic sensor (Sonar) technology; network; digitalization for the use of AI and big data; and nuclear-powered attack submarines as a strategic deterrent.

A Study on the Current Situation and Improved Method for the Smombie through Field Survey and ICT Trend Analysis (현장 조사와 ICT 동향 분석을 통한 스몸비 현황과 개선 방안 연구)

  • Lee, Dong Hoon;Oh, Hye Soo;Jang, Jae Min;Jeong, Jong Woon;Yang, Sang Oon
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.5
    • /
    • pp.74-85
    • /
    • 2020
  • Smart phone zombie or Smombie means pedestrians who walk without attention to their surroundings because they are focused upon their smart phone. Because the traffic accidents and injuries caused by Smombie have been increased rapidly in recent years, the social attention and policies are needed to prevent it. This study was conducted to analyze Smombie's current status and some solutions used before and to propose new improved method through the latest ICT trend. In this study, we did the field survey to check Smombies at several places in Seoul through people counting, and found that a lot of pedestrians still use the smart phone while walking. And we analyzed many case studies about some solutions to prevent Smombies previously. The case studies include legal regulations, government policies, smart phone app services and facilities that are used before. We studied them through internet searches and reference studies and we also checked the current operating situation as visiting several places that the solutions actually has been operated. Therefore, we found there are some limitations in previous solutions in terms of effectiveness and management. To consider new solution that can be expected to overcome the limitations, we analyzed the latest ICT trends focused on features to utilize the Smombie prevention, especially video recognition and digital signage. In these days, video recognition has been developed rapidly with assistance of AI technology and it can recognize the specific pedestrian's characteristics such as holding smart phone as well as hair style, clothes, backpack and etc. On the other hands, the digital signage is the convergence device that includes big display, network connection and various IoT sensors. It can be used as public media in many places for public services as well as advertising. Through these analysis results, we show the requirements and the user scenario for the improved method to prevent Smombie. Finally, we propose to develop R&D technology to recognize Smombie exactly as pedestrian attributes and to spread creative contents to increase pedestrian's interest and engagement for Smombie prevention through digital signage.

Management Automation Technique for Maintaining Performance of Machine Learning-Based Power Grid Condition Prediction Model (기계학습 기반 전력망 상태예측 모델 성능 유지관리 자동화 기법)

  • Lee, Haesung;Lee, Byunsung;Moon, Sangun;Kim, Junhyuk;Lee, Heysun
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.6 no.4
    • /
    • pp.413-418
    • /
    • 2020
  • It is necessary to manage the prediction accuracy of the machine learning model to prevent the decrease in the performance of the grid network condition prediction model due to overfitting of the initial training data and to continuously utilize the prediction model in the field by maintaining the prediction accuracy. In this paper, we propose an automation technique for maintaining the performance of the model, which increases the accuracy and reliability of the prediction model by considering the characteristics of the power grid state data that constantly changes due to various factors, and enables quality maintenance at a level applicable to the field. The proposed technique modeled a series of tasks for maintaining the performance of the power grid condition prediction model through the application of the workflow management technology in the form of a workflow, and then automated it to make the work more efficient. In addition, the reliability of the performance result is secured by evaluating the performance of the prediction model taking into account both the degree of change in the statistical characteristics of the data and the level of generalization of the prediction, which has not been attempted in the existing technology. Through this, the accuracy of the prediction model is maintained at a certain level, and further new development of predictive models with excellent performance is possible. As a result, the proposed technique not only solves the problem of performance degradation of the predictive model, but also improves the field utilization of the condition prediction model in a complex power grid system.

Development of Heat Demand Forecasting Model using Deep Learning (딥러닝을 이용한 열 수요예측 모델 개발)

  • Seo, Han-Seok;Shin, KwangSup
    • The Journal of Bigdata
    • /
    • v.3 no.2
    • /
    • pp.59-70
    • /
    • 2018
  • In order to provide stable district heat supplying service to the certain limited residential area, it is the most important to forecast the short-term future demand more accurately and produce and supply heat in efficient way. However, it is very difficult to develop a universal heat demand forecasting model that can be applied to general situations because the factors affecting the heat consumption are very diverse and the consumption patterns are changed according to individual consumers and regional characteristics. In particular, considering all of the various variables that can affect heat demand does not help improve performance in terms of accuracy and versatility. Therefore, this study aims to develop a demand forecasting model using deep learning based on only limited information that can be acquired in real time. A demand forecasting model was developed by learning the artificial neural network of the Tensorflow using past data consisting only of the outdoor temperature of the area and date as input variables. The performance of the proposed model was evaluated by comparing the accuracy of demand predicted with the previous regression model. The proposed heat demand forecasting model in this research showed that it is possible to enhance the accuracy using only limited variables which can be secured in real time. For the demand forecasting in a certain region, the proposed model can be customized by adding some features which can reflect the regional characteristics.

RDP-based Lateral Movement Detection using PageRank and Interpretable System using SHAP (PageRank 특징을 활용한 RDP기반 내부전파경로 탐지 및 SHAP를 이용한 설명가능한 시스템)

  • Yun, Jiyoung;Kim, Dong-Wook;Shin, Gun-Yoon;Kim, Sang-Soo;Han, Myung-Mook
    • Journal of Internet Computing and Services
    • /
    • v.22 no.4
    • /
    • pp.1-11
    • /
    • 2021
  • As the Internet developed, various and complex cyber attacks began to emerge. Various detection systems were used outside the network to defend against attacks, but systems and studies to detect attackers inside were remarkably rare, causing great problems because they could not detect attackers inside. To solve this problem, studies on the lateral movement detection system that tracks and detects the attacker's movements have begun to emerge. Especially, the method of using the Remote Desktop Protocol (RDP) is simple but shows very good results. Nevertheless, previous studies did not consider the effects and relationships of each logon host itself, and the features presented also provided very low results in some models. There was also a problem that the model could not explain why it predicts that way, which resulted in reliability and robustness problems of the model. To address this problem, this study proposes an interpretable RDP-based lateral movement detection system using page rank algorithm and SHAP(Shapley Additive Explanations). Using page rank algorithms and various statistical techniques, we create features that can be used in various models and we provide explanations for model prediction using SHAP. In this study, we generated features that show higher performance in most models than previous studies and explained them using SHAP.

Automatic Classification and Vocabulary Analysis of Political Bias in News Articles by Using Subword Tokenization (부분 단어 토큰화 기법을 이용한 뉴스 기사 정치적 편향성 자동 분류 및 어휘 분석)

  • Cho, Dan Bi;Lee, Hyun Young;Jung, Won Sup;Kang, Seung Shik
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.1
    • /
    • pp.1-8
    • /
    • 2021
  • In the political field of news articles, there are polarized and biased characteristics such as conservative and liberal, which is called political bias. We constructed keyword-based dataset to classify bias of news articles. Most embedding researches represent a sentence with sequence of morphemes. In our work, we expect that the number of unknown tokens will be reduced if the sentences are constituted by subwords that are segmented by the language model. We propose a document embedding model with subword tokenization and apply this model to SVM and feedforward neural network structure to classify the political bias. As a result of comparing the performance of the document embedding model with morphological analysis, the document embedding model with subwords showed the highest accuracy at 78.22%. It was confirmed that the number of unknown tokens was reduced by subword tokenization. Using the best performance embedding model in our bias classification task, we extract the keywords based on politicians. The bias of keywords was verified by the average similarity with the vector of politicians from each political tendency.

Evaluation of Artificial Intelligence Accuracy by Increasing the CNN Hidden Layers: Using Cerebral Hemorrhage CT Data (CNN 은닉층 증가에 따른 인공지능 정확도 평가: 뇌출혈 CT 데이터)

  • Kim, Han-Jun;Kang, Min-Ji;Kim, Eun-Ji;Na, Yong-Hyeon;Park, Jae-Hee;Baek, Su-Eun;Sim, Su-Man;Hong, Joo-Wan
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.1
    • /
    • pp.1-6
    • /
    • 2022
  • Deep learning is a collection of algorithms that enable learning by summarizing the key contents of large amounts of data; it is being developed to diagnose lesions in the medical imaging field. To evaluate the accuracy of the cerebral hemorrhage diagnosis, we used a convolutional neural network (CNN) to derive the diagnostic accuracy of cerebral parenchyma computed tomography (CT) images and the cerebral parenchyma CT images of areas where cerebral hemorrhages are suspected of having occurred. We compared the accuracy of CNN with different numbers of hidden layers and discovered that CNN with more hidden layers resulted in higher accuracy. The analysis results of the derived CT images used in this study to determine the presence of cerebral hemorrhages are expected to be used as foundation data in studies related to the application of artificial intelligence in the medical imaging industry.

The Effect of Content Layout in Mobile Shopping Product Page on Product Attitude and Purchase Intention: Focusing on Consumer Cognitive Responses Depending on Regulatory Focus (모바일 쇼핑몰 상세페이지 콘텐츠 레이아웃 형태가 제품태도 및 구매의도에 미치는 영향: 조절초점에 따른 소비자 인지 반응 중심으로)

  • Park, Kyunghee;Seo, Bonggoon;Park, Dohyung
    • Knowledge Management Research
    • /
    • v.23 no.2
    • /
    • pp.193-210
    • /
    • 2022
  • The rapid development of mobile technology and the improvement of network speed are providing convenience to various services, and mobile shopping malls are no exception. Although efforts are being made to promote sales by combining various technologies such as customized recommendations using big data and specialized personalization services based on artificial intelligence, most mobile shopping malls have the same detailed page information structure including detailed product information. In this context, in this study, it was determined that the content layout of the product detail page and the mobile product detail page layout tailored to the consumer's preference should be presented according to the consumer's preference. Based on Higgins' Regulatory Focus Theory, a study of consumer propensity revealed that the content layout arrangement on a product detail page, when presented in an F-shape, informs the consumer that it is organized. If presented in a Z-shape, vivid information was recognized, and it was examined whether the product attitude and purchase intention were affected. As a result, when the content layout composition was presented as a layout arrangement in the form of a sense of unity and organization, prevention-focused consumers were positively affected by product attitudes and purchase intentions, and promotion-oriented consumers felt freedom. When presented in an arrangement, it was confirmed that the product attitude and purchase intention were affected.