• Title/Summary/Keyword: AI image analysis

Search Result 184, Processing Time 0.028 seconds

Intelligent Records and Archives Management That Applies Artificial Intelligence (인공지능을 활용한 지능형 기록관리 방안)

  • Kim, Intaek;An, Dae-Jin;Rieh, Hae-young
    • Journal of Korean Society of Archives and Records Management
    • /
    • v.17 no.4
    • /
    • pp.225-250
    • /
    • 2017
  • The Fourth Industrial Revolution has become a focus of attention. Artificial intelligence (AI) is the key technology that will lead us to the industrial revolution. AI is also used to facilitate efficient workflow in records and archives management area, particularly abroad. In this study, we introduced the concept of AI and examined the background on how it rose. Then we reviewed the various applications of AI with prominent examples. We have also examined how AI is used in various areas such as text analysis, and image and speech recognition. In each of these areas, we have reviewed the application of AI from the viewpoint of records and archives management and suggested further utilization of the methods, including module and interface for intelligent records and archives information services.

Artificial Intelligence Based Medical Imaging: An Overview (AI 의료영상 분석의 개요 및 연구 현황에 대한 고찰)

  • Hong, Jun-Yong;Park, Sang Hyun;Jung, Young-Jin
    • Journal of radiological science and technology
    • /
    • v.43 no.3
    • /
    • pp.195-208
    • /
    • 2020
  • Artificial intelligence(AI) is a field of computer science that is defined as allowing computers to imitate human intellectual behavior, even though AI's performance is to imitate humans. It is grafted across software-based fields with the advantages of high accuracy and speed of processing that surpasses humans. Indeed, the AI based technology has become a key technology in the medical field that will lead the development of medical image analysis. Therefore, this article introduces and discusses the concept of deep learning-based medical imaging analysis using the principle of algorithms for convolutional neural network(CNN) and back propagation. The research cases application of the AI based medical imaging analysis is used to classify the various disease(such as chest disease, coronary artery disease, and cerebrovascular disease), and the performance estimation comparing between AI based medical imaging classifier and human experts.

Trends and Prospects in the Application of AI Technology for Creative Contents (차세대 콘텐츠를 위한 AI 기술 활용 동향 및 전망)

  • Hong, S.J.;Lee, S.W.;Yoon, M.S.;Park, J.Y.;Lee, S.W.;Kim, A.Y.;Jeong, I.K.
    • Electronics and Telecommunications Trends
    • /
    • v.35 no.5
    • /
    • pp.123-133
    • /
    • 2020
  • With the development of artificial intelligence (AI) and 5G technology, an ecosystem of digital content is gradually becoming intelligent, immersive, and convergent. However, there is not enough ultra-realistic content for the ecosystem. For ultra-realistic content services, creative content technologies using AI are being developed. This paper introduces the trends in and prospects of creative content technologies such as 3D content creation, digital holography, image-based motion recognition, content analysis/understanding/searching, sport AI, and content distribution.

Analysis of Domestic Research Trends on Artificial Intelligence-Based Prognostics and Health Management (인공지능 기반 건전성 예측 및 관리에 관한 국내 연구 동향 분석)

  • Ye-Eun Jeong;Yong Soo Kim
    • Journal of Korean Society for Quality Management
    • /
    • v.51 no.2
    • /
    • pp.223-245
    • /
    • 2023
  • Purpose: This study aim to identify the trends in AI-based PHM technology that can enhance reliability and minimize costs. Furthermore, this research provides valuable guidelines for future studies in various industries Methods: In this study, I collected and selected AI-based PHM studies, established classification criteria, and analyzed research trends based on classified fields and techniques. Results: Analysis of 125 domestic studies revealed a greater emphasis on machinery in both diagnosis and prognosis, with more papers dedicated to diagnosis. various algorithms were employed, including CNN for image diagnosis and frequency analysis for signal data. LSTM was commonly used in prognosis for predicting failures and remaining life. Different industries, data types, and objectives required diverse AI techniques, with GAN used for data augmentation and GA for feature extraction. Conclusion: As studies on AI-based PHM continue to grow, selecting appropriate algorithms for data types and analysis purposes is essential. Thus, analyzing research trends in AI-based PHM is crucial for its rapid development.

Preliminary study of artificial intelligence-based fuel-rod pattern analysis of low-quality tomographic image of fuel assembly

  • Seong, Saerom;Choi, Sehwan;Ahn, Jae Joon;Choi, Hyung-joo;Chung, Yong Hyun;You, Sei Hwan;Yeom, Yeon Soo;Choi, Hyun Joon;Min, Chul Hee
    • Nuclear Engineering and Technology
    • /
    • v.54 no.10
    • /
    • pp.3943-3948
    • /
    • 2022
  • Single-photon emission computed tomography is one of the reliable pin-by-pin verification techniques for spent-fuel assemblies. One of the challenges with this technique is to increase the total fuel assembly verification speed while maintaining high verification accuracy. The aim of the present study, therefore, was to develop an artificial intelligence (AI) algorithm-based tomographic image analysis technique for partial-defect verification of fuel assemblies. With the Monte Carlo (MC) simulation technique, a tomographic image dataset consisting of 511 fuel-rod patterns of a 3 × 3 fuel assembly was generated, and with these images, the VGG16, GoogLeNet, and ResNet models were trained. According to an evaluation of these models for different training dataset sizes, the ResNet model showed 100% pattern estimation accuracy. And, based on the different tomographic image qualities, all of the models showed almost 100% pattern estimation accuracy, even for low-quality images with unrecognizable fuel patterns. This study verified that an AI model can be effectively employed for accurate and fast partial-defect verification of fuel assemblies.

Image Recognition-based Learning Space Congestion Analysis App Development (영상인식 기반 학습공간 혼잡도 분석 앱 개발)

  • Jungkyun Lee;Youngchan Lee;Minsung Kim;Minseong Cho;Hong Min
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2024.05a
    • /
    • pp.179-180
    • /
    • 2024
  • 영상에서 객체를 인식하는 다양한 알고리즘이 제안되고 있으며 인식된 결과를 통해 새로운 서비스를 사용자에게 제공하는 사례가 늘어나고 있다. 본 논문에서는 카메라를 탑재한 임베디드 기기에서 영상을 촬영하고 촬영된 영상에서 의자와 사람을 탐지하여 학습공간의 혼잡도를 분석하는 앱을 설계하고 구현하였다. 구현 과정에서 실험을 통해 실시간성 확보 여부와 의자를 통한 빈자리 분할이 가능하다는 것과 앱에서도 모니터링 할 수 있다는 것을 검증하였다.

Effects of Artificial Intelligence Functionalities on Online Store'S Image and Continuance Intention: A Resource-Based View Perspective (인공지능 기능성이 온라인 상점의 이미지와 지속사용의도에 미치는 영향 연구: 자원기반관점을 중심으로)

  • Bo, Wen;Jin, Yunseon;Kwon, Ohbyung
    • The Journal of Society for e-Business Studies
    • /
    • v.25 no.2
    • /
    • pp.65-98
    • /
    • 2020
  • The adoption of artificial intelligence technology is continuously increasing in online stores. However, there have been no empirical studies that examine whether each of the artificial intelligence functions affects consumers' continuance intent to shop online. This study aims to understand the effect of the main function of artificial intelligence on the continuance intention of online store via empirical analysis. In particular, we focus on how artificial intelligence as a resource affects the heterogeneity of online stores in terms of resource-based views. We also analyzed the mediating effect of online store's image (product and service) between artificial intelligence (AI) functions and continuance intention. The results suggest that the presence of AI function on online stores positively influence the continuance intention from the resource-based perspective. Furthermore, it was found that AI technology positively affects the image of a product and service. We also found that there was a difference in the way of influencing the intention to use online stores by AI functions.

MRI Image Super Resolution through Filter Learning Based on Surrounding Gradient Information in 3D Space (3D 공간상에서의 주변 기울기 정보를 기반에 둔 필터 학습을 통한 MRI 영상 초해상화)

  • Park, Seongsu;Kim, Yunsoo;Gahm, Jin Kyu
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.2
    • /
    • pp.178-185
    • /
    • 2021
  • Three-dimensional high-resolution magnetic resonance imaging (MRI) provides fine-level anatomical information for disease diagnosis. However, there is a limitation in obtaining high resolution due to the long scan time for wide spatial coverage. Therefore, in order to obtain a clear high-resolution(HR) image in a wide spatial coverage, a super-resolution technology that converts a low-resolution(LR) MRI image into a high-resolution is required. In this paper, we propose a super-resolution technique through filter learning based on information on the surrounding gradient information in 3D space from 3D MRI images. In the learning step, the gradient features of each voxel are computed through eigen-decomposition from 3D patch. Based on these features, we get the learned filters that minimize the difference of intensity between pairs of LR and HR images for similar features. In test step, the gradient feature of the patch is obtained for each voxel, and the filter is applied by selecting a filter corresponding to the feature closest to it. As a result of learning 100 T1 brain MRI images of HCP which is publicly opened, we showed that the performance improved by up to about 11% compared to the traditional interpolation method.

Survival Time Prediction for Adenocarcinoma Lung Cancer based on Pathological Image Analysis (폐암 선암 생존시간 예측을 위한 병리학적 영상분석)

  • Vo, Vi Thi-Tuong;Kim, Aera;Lee, TaeBum;Kim, Soo-Hyung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.11a
    • /
    • pp.779-782
    • /
    • 2021
  • Survival time analysis is one of the main methods used by the pathologist to prognosis for cancer patients. In this paper, we strive to estimate the individual survival time of Adenocarcinoma (ADC) lung cancer patients from pathological images by adopting the convolutional neural network called the SurvPatchV1 model. First, we extracted tissue patches from the whole-slide images (WSI) to deal with extremely large dimensions of WSI. Then the survival time of each patch is estimated through the SurvPatchV1 model. Finally, the individual survival time of each patient is computed. The proposed method is trained and tested on the subset of the NLST dataset for ADC lung cancer. The result demonstrates that our model can obtain all tissue information in lieu of only tumor information in a whole pathological image to estimate the individual survival time.

AI-BASED Monitoring Of New Plant Growth Management System Design

  • Seung-Ho Lee;Seung-Jung Shin
    • International journal of advanced smart convergence
    • /
    • v.12 no.3
    • /
    • pp.104-108
    • /
    • 2023
  • This paper deals with research on innovative systems using Python-based artificial intelligence technology in the field of plant growth monitoring. The importance of monitoring and analyzing the health status and growth environment of plants in real time contributes to improving the efficiency and quality of crop production. This paper proposes a method of processing and analyzing plant image data using computer vision and deep learning technologies. The system was implemented using Python language and the main deep learning framework, TensorFlow, PyTorch. A camera system that monitors plants in real time acquires image data and provides it as input to a deep neural network model. This model was used to determine the growth state of plants, the presence of pests, and nutritional status. The proposed system provides users with information on plant state changes in real time by providing monitoring results in the form of visual or notification. In addition, it is also used to predict future growth conditions or anomalies by building data analysis and prediction models based on the collected data. This paper is about the design and implementation of Python-based plant growth monitoring systems, data processing and analysis methods, and is expected to contribute to important research areas for improving plant production efficiency and reducing resource consumption.