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Survival time analysis is one of the main methods used by the pathologist to prognosis for
cancer patients. In this paper, we strive to estimate the individual survival time of
Adenocarcinoma (ADC) lung cancer patients from pathological images by adopting the
convolutional neural network called the SurvPatchV1 model. First, we extracted tissue patches
from the whole-slide images (WSI) to deal with extremely large dimensions of WSIL Then the
survival time of each patch is estimated through the SurvPatchV1 model. Finally, the individual
survival time of each patient is computed. The proposed method is trained and tested on the
subset of the NLST dataset for ADC lung cancer. The result demonstrates that our model can
obtain all tissue information in lieu of only tumor information in a whole pathological image to
estimate the individual survival time.

Hence, they cannot be inputted to a CNN.

1. Introduction

Lung cancer is the leading cause of death
from cancer, with about half of adenocarcinoma
(ADC). ADC starts in

mucus—producing glandular cells of our body.

lung cancer cases

Many organs have these glands, such as the
breast, pancreas, lung, prostate, colon and etc.
ADC can be more effectively proposed through
sophisticated visual inspection of tumor pathology
images based on several recognized morphological
features such as tumor size or vascular invasion
in lung ADC.

Digital pathology images or Whole-slide
images (WSI) are often obtained with the
extremely large size (e.g., 100000 x 100000 pixels)

when compared with a natural image.

Additionally, There is a lack of publicly—available

databases of localized patch-level images
annotated with a large range of Histological
Tissue Type (HTT). As a result, computational
pathology research is constrained to diagnosing
specific diseases or classifying tissues from
specific organs, and cannot be readily generalized
to handle unexpected diseases and organs.
Pixel-wise data annotation for medical images is
highly time-consuming and requires domain
experts.

Cancer type classification, nuclei detection and
segmentation are a fundamental analytical step in
virtually all pathology imaging studies and
precision medicine [1][2][3][4][5][6]. Multiple CNN
VGG16,

architecture  such as InceptionV3,
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Figure 1 SurvPatchV1 model.

InceptionV2 and InceptionResNetV2 were trained
and optimized to classify cancer types [7].

One of the main outcomes in the cancer
studies domain is survival time or the time to an
Additionally,

analyses are based on the Cox model, log-rank

interesting event. most  survival

test and Kaplan—Meier. However, these
measurements focus on the survival probabilities
for patients in the cancer trial.

In this study, we observed the time from the
beginning of a screening period to the death
event. This paper aims to introduce the basic
concepts of survival time prediction from
pathological images, including how to produce the

individual survival time of a patient.

2. Method

To address the extremely large dimensions of
pathology images, we extracted the whole slide
image into smaller patches with size 128 x128.
Due to the noise patches such as the white
patches, we sampled all the extracted patches to
get the sampled patches. Next, we defined the
CNN model to obtain all sampled patches.

Our CNN model called SurvPatchV1 model as
in Fig. 1 is composed of 2 convolutional 2D
layers followed by Batch Normalization and
MaxPooling 2D respectively, and 2 fully connected

layers to obtain the final result. Each convolution
has kernel size 7 x 7. Each batchnormalization
with moentum 0.7. It takes a 128 x 128 patch as
an input, and output is the survival time of this

patch.

3. Results
We employed the 5-fold cross validation to
evaluate the proposed method. We also used 2
metrics: Mean Absolute Error as in (1) and
Concordance Index as in (2) as the evaluation
metrics. Even though lower MAE value the better
performance, the higher CI value the better
performance.
- Mean Absolute Error (MAE):
MAEZ%:M,—M (1)
- Concordance Index (CI) [8]:
Dl lysn-5)
cr= - (2)
§1T7< 5

Table 1 shows the performance metrics of our

method and other methods in comparison. The
DeepConvSurv was introduced in [11] for survival
analysis with pathology imjages. However, they
used extracted patches from tumor regions
annotated under the help of pathologists and

obtained the 62.9% CI. Meanwhile, we applied

Table 1. The survival time prediction results of three different methods.
Method SurvPatchV1 (Ours) InceptionV2 DeepConvSurv [9]
Fold MAE C-Index MAE C-Index MAE C-Index
1 495.69 0.57 571.87 0.56 507.03 0.54
2 597.39 0.55 911.29 0.50 566.78 0.45
3 526.45 0.64 554.36 0.50 547.17 0.61
4 338.55 0.67 394.61 0.51 419.69 0.65
5 567.62 0.60 907.12 0.51 567.94 0.57
Mean 505.14 0.65 667.85 0.52 521.72 0.56
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Figure 2. The result visualization of interdependencies of prediction time and actual time via the 5 test

tumorous patches and non-tumorous patches into
deep learning model and achieved 60.51%CI. In
methods had

performance in survival analysis. Besides that, we

other words, our significant
also attempted to apply the DeepConvSurv and

InceptionV2  architecture to investigate the
performance with the same input. Of the
compared methods, our method (SurvPatchV1
model) produced best result (MAE = 505.14 and
CI(%) = 60.51).

Fig. 2A showing the difference between the
prediction time and actual death time of each
patient in five independence tests. In more detail,
Scatter  plot (Fig. 2B)

log—fold-change distribution of predicted values

displaying the

with true values. The patient with negative log
fold change has a lower prediction time than their
actual death time, and the patient with positive
log fold change indicates that the predicted time
is higher than the actual death time. Almost all

folds.

the samples show the estimated value are lower
than the actual wvalue. In addition, the mean
absolute error distribution of 5 test folds is
visualized in Fig. 2C. We can also observe that
our model is relatively stable with different test
set. Fig. 2D showing the -correlation between
log-fold-change and mean absolute error of all

test sets.

4. Conclusion

In this paper, we introduced the method for
survival time prediction from ADC lung cancer
pathological images. Our proposed method applied
the entire tissue information on a pathological
instead of the only tissue

image cancer

information. Besides that, we estimated the
individual survival time based on the pathological
image of a patient. In the future, we expect to
improve the performance and extend our method

on combining pathological images with clinical
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data or CT images.
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