We applied machine learning of semi-supervised learning, transfer learning, and federated learning as examples of AI use cases that can be applied to the three major industries(Automobile industry, Energy industry, and AI/Healthcare industry) of Gwangju Metro-city, and established an ML strategy for AI services for the major industries. Based on the ML strategy of AI service, practical approaches are suggested, the semi-supervised learning approach is used for automobile image recognition technology, and the transfer learning approach is used for diabetic retinopathy detection in the healthcare field. Finally, the case of the federated learning approach is to be used to predict electricity demand. These approaches were tested based on hardware such as single board computer Raspberry Pi, Jaetson Nano, and Intel i-7, and the validity of practical approaches was verified.
의료 데이터를 이용하여 인공지능 기계학습 연구를 수행할 때 자주 마주하는 문제는 데이터 불균형, 데이터 부족 등이며 특히 정제된 충분한 데이터를 구하기 힘들다는 것이 큰 문제이다. 본 연구에서는 이를 해결하기 위해 GAN(Generative Adversarial Network) 기반 고해상도 의료 영상을 생성하는 프레임워크를 개발하고자 한다. 각 해상도 마다 Scale 의 Gradient 를 동시에 학습하여 빠르게 고해상도 이미지를 생성해낼 수 있도록 했다. 고해상도 이미지를 생성하는 Neural Network 를 고안하였으며, PGGAN, Style-GAN 과의 성능 비교를 통해 제안된 모델이 양질의 고해상도 의료영상 이미지를 더 빠르게 생성할 수 있음을 확인하였다. 이를 통해 인공지능 기계학습 연구에 있어서 의료 영상의 데이터 부족, 데이터 불균형 문제를 해결할 수 있는 Data augmentation 이나, Anomaly detection 등의 연구에 적용할 수 있다.
The purpose of this study was to investigate the expectation toward medical artificial intelligence(AI) of students in majoring health, and to utilize it as a basic data for widespread use of medical AI for 500 students majoring in health science at Cheonan city. The awareness of AI was 18.6%, the reliability of AI was 24.8%, and agreement to use of medical AI was 38%. Also, the higher the awareness and reliability of AI were, the higher the expectation of AI was. As a result, education on medical AI in the major field should be a cornerstone for the development of an effective healthcare environment utilizing medical AI by raising awareness, reliability and expectation of AI.
Journal of The Korea Institute of Healthcare Architecture
/
v.29
no.4
/
pp.45-56
/
2023
Purpose: Recently, Korea has been promoting smart cities that combine artificial intelligence(AI), big data, ICT, and the Internet of Things(IoT), and these technologies are being applied to housing services and are developing into smart housing services. This study try to analyze what is the most necessary and important the AI smart housing services for the housing disadvantaged persons through a survey of experts and the housing disadvantaged persons. And by collecting these necessary and important services, we aim to present elements and directions for the AI smart housing services policy for the housing disadvantaged persons. Methods: Firstly, we asked 11 experts, Secondly, the desire and necessity for the above smart housing service was identified through an online survey targeting the housing disadvantaged persons. Thirdly, the survey was analyzed and reliability was measured through descriptive statistical analysis using SPSS program. Fourthly, based on the results of descriptive statistics analysis, the necessity and importance of AI smart housing services from the perspective of the housing disadvantaged were derived. Results: The results of this study are that firstly, both experts and the housing disadvantaged persons viewed safety and health-related services as the most important and necessary among AI smart housing services, secondly, there is a difference in perspectives on the services that should be priority between experts and people with disabilities, and lastly there are differences in perspectives and needs for services that should be priority between the disabled and the elderly.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.17
no.3
/
pp.1022-1034
/
2023
Various aspects of artificial intelligence (AI) have become of significant interest to academia and industry in recent times. To satisfy these academic and industrial interests, it is necessary to comprehensively investigate trends in AI-related changes of diverse areas. In this study, we identified and predicted emerging convergences with the help of AI-associated research abstracts collected from the SCOPUS database. The bidirectional encoder representations obtained via the transformers-based topic discovery technique were subsequently deployed to identify emerging topics related to AI. The topics discovered concern edge computing, biomedical algorithms, predictive defect maintenance, medical applications, fake news detection with block chain, explainable AI and COVID-19 applications. Their convergences were further analyzed based on the shortest path between topics to predict emerging convergences. Our findings indicated emerging AI convergences towards healthcare, manufacturing, legal applications, and marketing. These findings are expected to have policy implications for facilitating the convergences in diverse industries. Potentially, this study could contribute to the exploitation and adoption of AI-enabled convergences from a practical perspective.
Artificial Intelligence (AI) has rapidly evolved over the past decade and has advanced in areas such as language comprehension, image and video recognition, programming, and scientific reasoning. Recent AI technologies based on large language models and foundation models are approaching or surpassing artificial general intelligence. These systems demonstrate superior performance in complex problem-solving, natural language processing, and multidomain tasks, and can potentially transform fields such as science, industry, healthcare, and education. However, these advancements have raised concerns regarding the safety and trustworthiness of advanced AI, including risks related to uncontrollability, ethical conflicts, long-term socioeconomic impacts, and safety assurance. Efforts are being expended to develop internationally agreed-upon standards to ensure the safety and reliability of AI. This study analyzes international trends in safety and trustworthiness standardization for advanced AI, identifies key areas for standardization, proposes future directions and strategies, and draws policy implications. The goal is to support the safe and trustworthy development of advanced AI and enhance international competitiveness through effective standardization.
This study explores variations in preferences for human and AI agents within the medical and financial services. Study 1 investigates whether there are preferential disparities between human and AI agents across these service domains. It finds that human agents are favored over AI agents in medical services, while AI agents receive greater preference in the financial services. Study 2 delves into the underlying reasons for the preference differentials between human and AI agents by assessing the significance of certain capabilities as perceived by users in each domain. The findings reveal a mediating role of perceived empathy importance in the effect of service domains on human-AI preference. Furthermore, perceived empathy is deemed a more critical capability by users for preferring human over AI agents across both service domains compared to other capabilities such as experience and agency. This research is noteworthy for elucidating the variances in preferences for human and AI agents across medical and financial services and the rationale behind these differences. It enhances our theoretical comprehension of the pivotal factors influencing preferences for human and AI agents, underscoring the significance of human experiential capabilities like empathy.
Journal of the Korea Society of Computer and Information
/
v.29
no.2
/
pp.101-108
/
2024
AI-OCR (Artificial Intelligence Optical Character Recognition) combines OCR technology with Artificial Intelligence to overcome limitations that required human intervention. To enhance the performance of AI-OCR, training on diverse data sets is essential. However, the recognition rate declines when image colors have similar brightness levels. To solve this issue, this study employs Homomorphic filtering as a preprocessing step to clearly differentiate color levels, thereby increasing text recognition rates. While Homomorphic filtering is ideal for text extraction because of its ability to adjust the high and low frequency components of an image separately using a gamma value, it has the downside of requiring manual adjustments to the gamma value. This research proposes a range for gamma threshold values based on tests involving image contrast, brightness, and entropy. Experimental results using the proposed range of gamma values in Homomorphic filtering suggest a high likelihood for effective AI-OCR performance.
Governments around the world are actively establishing strategies and initiatives to spread the use of artificial intelligence (AI), for AI is not a mere new technology, but is an innovative technology that brings about extensive changes in industrial and social structures and is a core engine that will lead the 4th Industrial Revolution. The South Korean government has also been paying attention to AI as a technology and tool for innovative growth, but its application to the industries is still rather sluggish. The government has prepared multifarious AI-related policies with the aim of constructing South Korea as an AI powerhouse, but there is no clear strategy on which detailed policies to implement first and which industries to apply AI preferentially. With these limitations of South Korea's AI policies in mind, this paper analyzed the priorities of industries in AI adoption and the priorities of AI-related national policies, using Delphi-AHP method for 30 top-level AI experts in South Korea. The results of analysis show that AI application is urgent and necessary in the fields of medical/healthcare, public and safety, and manufacturing, which seems to reflect the peak of the COVID-19 crisis in the second half of 2020 at the time of the investigation. And it turns out that policies related to AI talent cultivation, data, and R&D investment are important and urgent above all in order for organizations to apply AI. This suggests that strategies are required to focus limited national resources on these industries and policies first.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.