• Title/Summary/Keyword: AI healthcare

Search Result 151, Processing Time 0.026 seconds

Presenting Practical Approaches for AI-specialized Fields in Gwangju Metro-city (광주광역시의 AI 특화분야를 위한 실용적인 접근 사례 제시)

  • Cha, ByungRae;Cha, YoonSeok;Park, Sun;Shin, Byeong-Chun;Kim, JongWon
    • Smart Media Journal
    • /
    • v.10 no.1
    • /
    • pp.55-62
    • /
    • 2021
  • We applied machine learning of semi-supervised learning, transfer learning, and federated learning as examples of AI use cases that can be applied to the three major industries(Automobile industry, Energy industry, and AI/Healthcare industry) of Gwangju Metro-city, and established an ML strategy for AI services for the major industries. Based on the ML strategy of AI service, practical approaches are suggested, the semi-supervised learning approach is used for automobile image recognition technology, and the transfer learning approach is used for diabetic retinopathy detection in the healthcare field. Finally, the case of the federated learning approach is to be used to predict electricity demand. These approaches were tested based on hardware such as single board computer Raspberry Pi, Jaetson Nano, and Intel i-7, and the validity of practical approaches was verified.

GAN-based research for high-resolution medical image generation (GAN 기반 고해상도 의료 영상 생성을 위한 연구)

  • Ko, Jae-Yeong;Cho, Baek-Hwan;Chung, Myung-Jin
    • Annual Conference of KIPS
    • /
    • 2020.05a
    • /
    • pp.544-546
    • /
    • 2020
  • 의료 데이터를 이용하여 인공지능 기계학습 연구를 수행할 때 자주 마주하는 문제는 데이터 불균형, 데이터 부족 등이며 특히 정제된 충분한 데이터를 구하기 힘들다는 것이 큰 문제이다. 본 연구에서는 이를 해결하기 위해 GAN(Generative Adversarial Network) 기반 고해상도 의료 영상을 생성하는 프레임워크를 개발하고자 한다. 각 해상도 마다 Scale 의 Gradient 를 동시에 학습하여 빠르게 고해상도 이미지를 생성해낼 수 있도록 했다. 고해상도 이미지를 생성하는 Neural Network 를 고안하였으며, PGGAN, Style-GAN 과의 성능 비교를 통해 제안된 모델이 양질의 고해상도 의료영상 이미지를 더 빠르게 생성할 수 있음을 확인하였다. 이를 통해 인공지능 기계학습 연구에 있어서 의료 영상의 데이터 부족, 데이터 불균형 문제를 해결할 수 있는 Data augmentation 이나, Anomaly detection 등의 연구에 적용할 수 있다.

The Expectation of Medical Artificial Intelligence of Students Majoring in Health in Convergence Era (융복합 시대에 일부 보건계열 전공 학생들의 의료용 인공지능에 대한 기대도)

  • Moon, Ja-Young;Sim, Seon-Ju
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.9
    • /
    • pp.97-104
    • /
    • 2018
  • The purpose of this study was to investigate the expectation toward medical artificial intelligence(AI) of students in majoring health, and to utilize it as a basic data for widespread use of medical AI for 500 students majoring in health science at Cheonan city. The awareness of AI was 18.6%, the reliability of AI was 24.8%, and agreement to use of medical AI was 38%. Also, the higher the awareness and reliability of AI were, the higher the expectation of AI was. As a result, education on medical AI in the major field should be a cornerstone for the development of an effective healthcare environment utilizing medical AI by raising awareness, reliability and expectation of AI.

A Study on the Necessity and Importance of AI Smart Housing Services for the Housing Disadvantaged Persons (주거약자를 위한 AI 스마트하우징 주거서비스의 필요성과 중요도에 관한 연구)

  • Bae, Yoongho;Kim, Sungwan;Ha, Chun
    • Journal of The Korea Institute of Healthcare Architecture
    • /
    • v.29 no.4
    • /
    • pp.45-56
    • /
    • 2023
  • Purpose: Recently, Korea has been promoting smart cities that combine artificial intelligence(AI), big data, ICT, and the Internet of Things(IoT), and these technologies are being applied to housing services and are developing into smart housing services. This study try to analyze what is the most necessary and important the AI smart housing services for the housing disadvantaged persons through a survey of experts and the housing disadvantaged persons. And by collecting these necessary and important services, we aim to present elements and directions for the AI smart housing services policy for the housing disadvantaged persons. Methods: Firstly, we asked 11 experts, Secondly, the desire and necessity for the above smart housing service was identified through an online survey targeting the housing disadvantaged persons. Thirdly, the survey was analyzed and reliability was measured through descriptive statistical analysis using SPSS program. Fourthly, based on the results of descriptive statistics analysis, the necessity and importance of AI smart housing services from the perspective of the housing disadvantaged were derived. Results: The results of this study are that firstly, both experts and the housing disadvantaged persons viewed safety and health-related services as the most important and necessary among AI smart housing services, secondly, there is a difference in perspectives on the services that should be priority between experts and people with disabilities, and lastly there are differences in perspectives and needs for services that should be priority between the disabled and the elderly.

Discovering AI-enabled convergences based on BERT and topic network

  • Ji Min Kim;Seo Yeon Lee;Won Sang Lee
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.3
    • /
    • pp.1022-1034
    • /
    • 2023
  • Various aspects of artificial intelligence (AI) have become of significant interest to academia and industry in recent times. To satisfy these academic and industrial interests, it is necessary to comprehensively investigate trends in AI-related changes of diverse areas. In this study, we identified and predicted emerging convergences with the help of AI-associated research abstracts collected from the SCOPUS database. The bidirectional encoder representations obtained via the transformers-based topic discovery technique were subsequently deployed to identify emerging topics related to AI. The topics discovered concern edge computing, biomedical algorithms, predictive defect maintenance, medical applications, fake news detection with block chain, explainable AI and COVID-19 applications. Their convergences were further analyzed based on the shortest path between topics to predict emerging convergences. Our findings indicated emerging AI convergences towards healthcare, manufacturing, legal applications, and marketing. These findings are expected to have policy implications for facilitating the convergences in diverse industries. Potentially, this study could contribute to the exploitation and adoption of AI-enabled convergences from a practical perspective.

Standardization Trends on Safety and Trustworthiness Technology for Advanced AI (첨단 인공지능 안전 및 신뢰성 기술 표준 동향)

  • J.H. Jeon
    • Electronics and Telecommunications Trends
    • /
    • v.39 no.5
    • /
    • pp.108-122
    • /
    • 2024
  • Artificial Intelligence (AI) has rapidly evolved over the past decade and has advanced in areas such as language comprehension, image and video recognition, programming, and scientific reasoning. Recent AI technologies based on large language models and foundation models are approaching or surpassing artificial general intelligence. These systems demonstrate superior performance in complex problem-solving, natural language processing, and multidomain tasks, and can potentially transform fields such as science, industry, healthcare, and education. However, these advancements have raised concerns regarding the safety and trustworthiness of advanced AI, including risks related to uncontrollability, ethical conflicts, long-term socioeconomic impacts, and safety assurance. Efforts are being expended to develop internationally agreed-upon standards to ensure the safety and reliability of AI. This study analyzes international trends in safety and trustworthiness standardization for advanced AI, identifies key areas for standardization, proposes future directions and strategies, and draws policy implications. The goal is to support the safe and trustworthy development of advanced AI and enhance international competitiveness through effective standardization.

Understanding the Impact of Perceived Empathy on Consumer Preferences for Human and AI Agents in Healthcare and Financial Services (의료 및 금융 서비스에서 인간-AI 에이전트 선호도에 소비자가 지각하는 공감 능력의 중요성이 미치는 영향)

  • Ga Young Lim;Aekyoung Kim
    • Knowledge Management Research
    • /
    • v.25 no.2
    • /
    • pp.155-176
    • /
    • 2024
  • This study explores variations in preferences for human and AI agents within the medical and financial services. Study 1 investigates whether there are preferential disparities between human and AI agents across these service domains. It finds that human agents are favored over AI agents in medical services, while AI agents receive greater preference in the financial services. Study 2 delves into the underlying reasons for the preference differentials between human and AI agents by assessing the significance of certain capabilities as perceived by users in each domain. The findings reveal a mediating role of perceived empathy importance in the effect of service domains on human-AI preference. Furthermore, perceived empathy is deemed a more critical capability by users for preferring human over AI agents across both service domains compared to other capabilities such as experience and agency. This research is noteworthy for elucidating the variances in preferences for human and AI agents across medical and financial services and the rationale behind these differences. It enhances our theoretical comprehension of the pivotal factors influencing preferences for human and AI agents, underscoring the significance of human experiential capabilities like empathy.

Study on OCR Enhancement of Homomorphic Filtering with Adaptive Gamma Value

  • Heeyeon Jo;Jeongwoo Lee;Hongrae Lee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.2
    • /
    • pp.101-108
    • /
    • 2024
  • AI-OCR (Artificial Intelligence Optical Character Recognition) combines OCR technology with Artificial Intelligence to overcome limitations that required human intervention. To enhance the performance of AI-OCR, training on diverse data sets is essential. However, the recognition rate declines when image colors have similar brightness levels. To solve this issue, this study employs Homomorphic filtering as a preprocessing step to clearly differentiate color levels, thereby increasing text recognition rates. While Homomorphic filtering is ideal for text extraction because of its ability to adjust the high and low frequency components of an image separately using a gamma value, it has the downside of requiring manual adjustments to the gamma value. This research proposes a range for gamma threshold values based on tests involving image contrast, brightness, and entropy. Experimental results using the proposed range of gamma values in Homomorphic filtering suggest a high likelihood for effective AI-OCR performance.

The Application of Delphi-AHP Method in the Priority of Policies for Expanding the Use of Artificial Intelligence

  • Han, Eunyoung
    • Journal of Internet Computing and Services
    • /
    • v.22 no.4
    • /
    • pp.99-110
    • /
    • 2021
  • Governments around the world are actively establishing strategies and initiatives to spread the use of artificial intelligence (AI), for AI is not a mere new technology, but is an innovative technology that brings about extensive changes in industrial and social structures and is a core engine that will lead the 4th Industrial Revolution. The South Korean government has also been paying attention to AI as a technology and tool for innovative growth, but its application to the industries is still rather sluggish. The government has prepared multifarious AI-related policies with the aim of constructing South Korea as an AI powerhouse, but there is no clear strategy on which detailed policies to implement first and which industries to apply AI preferentially. With these limitations of South Korea's AI policies in mind, this paper analyzed the priorities of industries in AI adoption and the priorities of AI-related national policies, using Delphi-AHP method for 30 top-level AI experts in South Korea. The results of analysis show that AI application is urgent and necessary in the fields of medical/healthcare, public and safety, and manufacturing, which seems to reflect the peak of the COVID-19 crisis in the second half of 2020 at the time of the investigation. And it turns out that policies related to AI talent cultivation, data, and R&D investment are important and urgent above all in order for organizations to apply AI. This suggests that strategies are required to focus limited national resources on these industries and policies first.