• Title/Summary/Keyword: AI Software

Search Result 525, Processing Time 0.023 seconds

Design of Artificial Intelligence Education Program based on Design-based Research

  • Yu, Won Jin;Jang, Jun Hyeok;Ahn, Joong Min;Park, Dae Ryoon;Yoo, In Hwan;Bae, Young Kwon;Kim, Woo Yeol
    • International journal of advanced smart convergence
    • /
    • v.8 no.4
    • /
    • pp.113-120
    • /
    • 2019
  • Recently, the artificial intelligence(AI) is used in various environments in life, and research on this is being actively conducted in education. In this paper, we designed a Design-Based Research(DBR)-based AI programming education program and analyzed the application of the program for the improvement of understanding of AI in elementary school. In the artificial intelligence education program in elementary school, we should considerthat itshould be used in conjunction with software education through programming activities, rather than creating interest through simple AI experiences. The designed education program reflects the collaborative problem-solving procedures following the DBR process of analysis - design - execution - redesign, allowing the real-world problem-solving activities using AI experiences and block-type programming language. This paper also examined the examples of education programs to improve understanding of AI by using Machine Learning for Kids and to draw implications for developing and operating such a program.

How to Review a Paper Written by Artificial Intelligence (인공지능으로 작성된 논문의 처리 방안)

  • Dong Woo Shin;Sung-Hoon Moon
    • Journal of Digestive Cancer Research
    • /
    • v.12 no.1
    • /
    • pp.38-43
    • /
    • 2024
  • Artificial Intelligence (AI) is the intelligence of machines or software, in contrast to human intelligence. Generative AI technologies, such as ChatGPT, have emerged as valuable research tools that facilitate brainstorming ideas for research, analyzing data, and writing papers. However, their application has raised concerns regarding authorship, copyright, and ethical considerations. Many organizations of medical journal editors, including the International Committee of Medical Journal Editors and the World Association of Medical Editors, do not recognize AI technology as an author. Instead, they recommend that researchers explicitly acknowledge the use of AI tools in their research methods or acknowledgments. Similarly, international journals do not recognize AI tools as authors and insist that human authors should be accountable for the research findings. Therefore, when integrating AI-generated content into papers, it should be disclosed under the responsibility of human authors, and the details of the AI tools employed should be specified to ensure transparency and reliability.

A Study on the Composition of Curriculum for AI Education in Elementary School (초등학교 AI교육을 위한 교육과정 구성 연구)

  • Bae, Youngkwon;Yoo, Inhwan;Yu, Wonjin;Kim, Wooyeol
    • Journal of The Korean Association of Information Education
    • /
    • v.25 no.2
    • /
    • pp.279-288
    • /
    • 2021
  • The interest in artificial intelligence education in education is also high based on recent social interest in artificial intelligence. Accordingly, Korea is preparing a foothold for revitalizing artificial intelligence education in the future, such as announcing an artificial intelligence education plan by expanding from software (SW) education that has become a regular curriculum after the 2015 revised curriculum, and various studies are being conducted. However, research on the curriculum related to what and how to educate in artificial intelligence education is still in its infancy and further research is needed. A look at related research shows many similarities and differences in research related to domestic and foreign AI curriculum, because there are differences in the areas and content elements that each research focuses on. Therefore, in this study, in preparation for the future independence of the information subject and the formalization of AI education, literature studies on domestic and foreign AI curriculum are conducted, and based on this, the direction of the curriculum composition for elementary school AI education is to be explored.

Exploring the Operating and Supporting Direction of AI Curriculum by Analyzing A High School Case Study

  • Sungryong Ju;Seulgi Song;Seung-Bo Park
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.4
    • /
    • pp.175-186
    • /
    • 2023
  • This study was conducted to explore the necessary conditions and support for stable operation of an expanded AI curriculum in education. A high school that has implemented an AI curriculum since 2020 was targeted, and students and teachers were surveyed on their perceptions of the AI curriculum, implementation and support strategies. The survey items were categorized into 1) experience with AI education, 2) implementation direction of AI education, and 3) expected effects through AI education, and the results were derived focusing on frequency analysis to identify trends. The analysis resulted in three implications. First, it was suggested that the activation of AI education. Second, the need to develop a hands-on AI curriculum and incorporate AI throughout the entire curriculum was highlighted. Third, it was emphasized that efforts to enhance the capabilities of teachers to implement AI teaching and learning, along with the expansion of physical infrastructure for hands-on education, are necessary.

Key Principles of Clinical Validation, Device Approval, and Insurance Coverage Decisions of Artificial Intelligence

  • Seong Ho Park;Jaesoon Choi;Jeong-Sik Byeon
    • Korean Journal of Radiology
    • /
    • v.22 no.3
    • /
    • pp.442-453
    • /
    • 2021
  • Artificial intelligence (AI) will likely affect various fields of medicine. This article aims to explain the fundamental principles of clinical validation, device approval, and insurance coverage decisions of AI algorithms for medical diagnosis and prediction. Discrimination accuracy of AI algorithms is often evaluated with the Dice similarity coefficient, sensitivity, specificity, and traditional or free-response receiver operating characteristic curves. Calibration accuracy should also be assessed, especially for algorithms that provide probabilities to users. As current AI algorithms have limited generalizability to real-world practice, clinical validation of AI should put it to proper external testing and assisting roles. External testing could adopt diagnostic case-control or diagnostic cohort designs. A diagnostic case-control study evaluates the technical validity/accuracy of AI while the latter tests the clinical validity/accuracy of AI in samples representing target patients in real-world clinical scenarios. Ultimate clinical validation of AI requires evaluations of its impact on patient outcomes, referred to as clinical utility, and for which randomized clinical trials are ideal. Device approval of AI is typically granted with proof of technical validity/accuracy and thus does not intend to directly indicate if AI is beneficial for patient care or if it improves patient outcomes. Neither can it categorically address the issue of limited generalizability of AI. After achieving device approval, it is up to medical professionals to determine if the approved AI algorithms are beneficial for real-world patient care. Insurance coverage decisions generally require a demonstration of clinical utility that the use of AI has improved patient outcomes.

A Study on the Development Trend of Artificial Intelligence Using Text Mining Technique: Focused on Open Source Software Projects on Github (텍스트 마이닝 기법을 활용한 인공지능 기술개발 동향 분석 연구: 깃허브 상의 오픈 소스 소프트웨어 프로젝트를 대상으로)

  • Chong, JiSeon;Kim, Dongsung;Lee, Hong Joo;Kim, Jong Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.1
    • /
    • pp.1-19
    • /
    • 2019
  • Artificial intelligence (AI) is one of the main driving forces leading the Fourth Industrial Revolution. The technologies associated with AI have already shown superior abilities that are equal to or better than people in many fields including image and speech recognition. Particularly, many efforts have been actively given to identify the current technology trends and analyze development directions of it, because AI technologies can be utilized in a wide range of fields including medical, financial, manufacturing, service, and education fields. Major platforms that can develop complex AI algorithms for learning, reasoning, and recognition have been open to the public as open source projects. As a result, technologies and services that utilize them have increased rapidly. It has been confirmed as one of the major reasons for the fast development of AI technologies. Additionally, the spread of the technology is greatly in debt to open source software, developed by major global companies, supporting natural language recognition, speech recognition, and image recognition. Therefore, this study aimed to identify the practical trend of AI technology development by analyzing OSS projects associated with AI, which have been developed by the online collaboration of many parties. This study searched and collected a list of major projects related to AI, which were generated from 2000 to July 2018 on Github. This study confirmed the development trends of major technologies in detail by applying text mining technique targeting topic information, which indicates the characteristics of the collected projects and technical fields. The results of the analysis showed that the number of software development projects by year was less than 100 projects per year until 2013. However, it increased to 229 projects in 2014 and 597 projects in 2015. Particularly, the number of open source projects related to AI increased rapidly in 2016 (2,559 OSS projects). It was confirmed that the number of projects initiated in 2017 was 14,213, which is almost four-folds of the number of total projects generated from 2009 to 2016 (3,555 projects). The number of projects initiated from Jan to Jul 2018 was 8,737. The development trend of AI-related technologies was evaluated by dividing the study period into three phases. The appearance frequency of topics indicate the technology trends of AI-related OSS projects. The results showed that the natural language processing technology has continued to be at the top in all years. It implied that OSS had been developed continuously. Until 2015, Python, C ++, and Java, programming languages, were listed as the top ten frequently appeared topics. However, after 2016, programming languages other than Python disappeared from the top ten topics. Instead of them, platforms supporting the development of AI algorithms, such as TensorFlow and Keras, are showing high appearance frequency. Additionally, reinforcement learning algorithms and convolutional neural networks, which have been used in various fields, were frequently appeared topics. The results of topic network analysis showed that the most important topics of degree centrality were similar to those of appearance frequency. The main difference was that visualization and medical imaging topics were found at the top of the list, although they were not in the top of the list from 2009 to 2012. The results indicated that OSS was developed in the medical field in order to utilize the AI technology. Moreover, although the computer vision was in the top 10 of the appearance frequency list from 2013 to 2015, they were not in the top 10 of the degree centrality. The topics at the top of the degree centrality list were similar to those at the top of the appearance frequency list. It was found that the ranks of the composite neural network and reinforcement learning were changed slightly. The trend of technology development was examined using the appearance frequency of topics and degree centrality. The results showed that machine learning revealed the highest frequency and the highest degree centrality in all years. Moreover, it is noteworthy that, although the deep learning topic showed a low frequency and a low degree centrality between 2009 and 2012, their ranks abruptly increased between 2013 and 2015. It was confirmed that in recent years both technologies had high appearance frequency and degree centrality. TensorFlow first appeared during the phase of 2013-2015, and the appearance frequency and degree centrality of it soared between 2016 and 2018 to be at the top of the lists after deep learning, python. Computer vision and reinforcement learning did not show an abrupt increase or decrease, and they had relatively low appearance frequency and degree centrality compared with the above-mentioned topics. Based on these analysis results, it is possible to identify the fields in which AI technologies are actively developed. The results of this study can be used as a baseline dataset for more empirical analysis on future technology trends that can be converged.

Development of AI Speaker with Active Interaction Customized for the Elderly (고령자 맞춤 능동적 상호작용의 AI스피커 개발)

  • Jeong, Jae-Heon;Jang, Ji-Hoon;Moon, Mikyeong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.6
    • /
    • pp.1223-1230
    • /
    • 2020
  • Due to the aging of the population, the number of the elderly is increasing, and the nuclear family is rapidly progressing. Today's AI speakers respond to user's commands rather than conversations that occur on a daily basis. If the elderly living alone do not talk first, the usability of the AI speaker will decrease. In this paper, it describes the development of AI speakers for active interaction tailored to the aged. This speaker can identify the movements of the elderly who live alone and their surroundings, actively speak to them, and display emotional expressions appropriate to the content of the conversation. Through this, users will be able to anthropomorphize AI speakers, so they can feel familiarity and emotional conversation is expected to play a positive role in easing their loneliness.

Effectiveness Analysis of AI Maker Coding Education (AI 메이커 코딩 교육의 효과성 분석)

  • Lee, Jaeho;Kim, Daehyun;Lee, Seunghun
    • 한국정보교육학회:학술대회논문집
    • /
    • 2021.08a
    • /
    • pp.77-84
    • /
    • 2021
  • The purpose of this study is to propose AI maker coding education as a way to improve computational thinking(CT), which is an essential competence for problem-solving capability in modern society, and to analyze the effectiveness of this education on improving CT in elementary school students. For the research, 5 students from 4th graders and 5 students from 6th graders were recruited, and AI maker coding education was planned in 8 sessions to form classes from basic block coding and maker education to real-life problem solving. To analyze the effectiveness of AI maker coding education, pre- and post-CT examinations were performed. The test results confirmed that AI maker coding education had a significant effect on "abstraction", "algorithm", and "data processing" in the five CT components, and confirmed that there was no correlation in "problem resolution" and "automation". Overall, the average score of all students increased, and the deviation between students decreased, confirming that AI maker coding education was effective in improving CT.

  • PDF

Analysis of the effects of non-face-to-face SW·AI education for Pre-service teachers (예비교사 대상 비대면 SW·AI 교육 효과 분석)

  • Park, SunJu
    • 한국정보교육학회:학술대회논문집
    • /
    • 2021.08a
    • /
    • pp.315-320
    • /
    • 2021
  • In order to prepare for future social changes, SW·AI education is essential. In this paper, after conducting non-face-to-face SW·AI education for pre-service teachers, the effectiveness of SW education before and after education was measured using the measurement tool on the software educational effectiveness. As a result of the analysis, the overall average and the average of the 'computational thinking' and 'SW literacy' domains increased significantly, and the difference between the averages before and after education was statistically significant in decomposition, pattern recognition, abstraction, and algorithm, which are sub domains of 'computational thinking'. Through SW·AI education, students not only recognize the necessity of SW education and the importance of computational thinking, but also understand the process of decomposing information, recognizing and extracting patterns, and expressing problem-solving processes. It can be seen that non-face-to-face SW·AI education has the effect of improving computational thinking and SW literacy beyond recognizing the importance of SW.

  • PDF

A Study on the Medical Application and Personal Information Protection of Generative AI (생성형 AI의 의료적 활용과 개인정보보호)

  • Lee, Sookyoung
    • The Korean Society of Law and Medicine
    • /
    • v.24 no.4
    • /
    • pp.67-101
    • /
    • 2023
  • The utilization of generative AI in the medical field is also being rapidly researched. Access to vast data sets reduces the time and energy spent in selecting information. However, as the effort put into content creation decreases, there is a greater likelihood of associated issues arising. For example, with generative AI, users must discern the accuracy of results themselves, as these AIs learn from data within a set period and generate outcomes. While the answers may appear plausible, their sources are often unclear, making it challenging to determine their veracity. Additionally, the possibility of presenting results from a biased or distorted perspective cannot be discounted at present on ethical grounds. Despite these concerns, the field of generative AI is continually advancing, with an increasing number of users leveraging it in various sectors, including biomedical and life sciences. This raises important legal considerations regarding who bears responsibility and to what extent for any damages caused by these high-performance AI algorithms. A general overview of issues with generative AI includes those discussed above, but another perspective arises from its fundamental nature as a large-scale language model ('LLM') AI. There is a civil law concern regarding "the memorization of training data within artificial neural networks and its subsequent reproduction". Medical data, by nature, often reflects personal characteristics of patients, potentially leading to issues such as the regeneration of personal information. The extensive application of generative AI in scenarios beyond traditional AI brings forth the possibility of legal challenges that cannot be ignored. Upon examining the technical characteristics of generative AI and focusing on legal issues, especially concerning the protection of personal information, it's evident that current laws regarding personal information protection, particularly in the context of health and medical data utilization, are inadequate. These laws provide processes for anonymizing and de-identification, specific personal information but fall short when generative AI is applied as software in medical devices. To address the functionalities of generative AI in clinical software, a reevaluation and adjustment of existing laws for the protection of personal information are imperative.