• Title/Summary/Keyword: AI Modeling

Search Result 242, Processing Time 0.025 seconds

Emerging Data Management Tools and Their Implications for Decision Support

  • Eorm, Sean B.;Novikova, Elena;Yoo, Sangjin
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.2 no.2
    • /
    • pp.189-207
    • /
    • 1997
  • Recently, we have witnessed a host of emerging tools in the management support systems (MSS) area including the data warehouse/multidimensinal databases (MDDB), data mining, on-line analytical processing (OLAP), intelligent agents, World Wide Web(WWW) technologies, the Internet, and corporate intranets. These tools are reshaping MSS developments in organizations. This article reviews a set of emerging data management technologies in the knowledge discovery in databases(KDD) process and analyzes their implications for decision support. Furthermore, today's MSS are equipped with a plethora of AI techniques (artifical neural networks, and genetic algorithms, etc) fuzzy sets, modeling by example , geographical information system(GIS), logic modeling, and visual interactive modeling (VIM) , All these developments suggest that we are shifting the corporate decision making paradigm form information-driven decision making in the1980s to knowledge-driven decision making in the 1990s.

  • PDF

Disambiguiation of Qualitative Reasoning with Quantitative Knowledge (정성추론에서의 모호성제거를 위한 양적지식의 활용)

  • Yoon, Wan-Chul
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.18 no.1
    • /
    • pp.81-89
    • /
    • 1992
  • After much research on qualitative reasoning, the problem of ambiguities still hampers the practicality of this important AI tool. In this paper, the sources of ambiguities are examined in depth with a systems engineering point of view and possible directions to disambiguation are suggested. This includes some modeling strategies and an architecture of temporal inference for building unambiguous qualitative models of practical complexity. It is argued that knowledge of multiple levels in abstraction hierarchy must be reflected in the modeling to resolve ambiguities by introducing the designer's decisions. The inference engine must be able to integrate two different types of temporal knowledge representation to determine the partial ordering of future events. As an independent quantity management system that supports the suggested modeling approach, LIQUIDS(Linear Quantity-Information Deriving System) is described. The inference scheme can be conjoined with ordinary rule-based reasoning systems and hence generalized into many different domains.

  • PDF

A technique for predicting the cutting points of fish for the target weight using AI machine vision

  • Jang, Yong-hun;Lee, Myung-sub
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.4
    • /
    • pp.27-36
    • /
    • 2022
  • In this paper, to improve the conditions of the fish processing site, we propose a method to predict the cutting point of fish according to the target weight using AI machine vision. The proposed method performs image-based preprocessing by first photographing the top and front views of the input fish. Then, RANSAC(RANdom SAmple Consensus) is used to extract the fish contour line, and then 3D external information of the fish is obtained using 3D modeling. Next, machine learning is performed on the extracted three-dimensional feature information and measured weight information to generate a neural network model. Subsequently, the fish is cut at the cutting point predicted by the proposed technique, and then the weight of the cut piece is measured. We compared the measured weight with the target weight and evaluated the performance using evaluation methods such as MAE(Mean Absolute Error) and MRE(Mean Relative Error). The obtained results indicate that an average error rate of less than 3% was achieved in comparison to the target weight. The proposed technique is expected to contribute greatly to the development of the fishery industry in the future by being linked to the automation system.

Physics informed neural networks for surrogate modeling of accidental scenarios in nuclear power plants

  • Federico Antonello;Jacopo Buongiorno;Enrico Zio
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3409-3416
    • /
    • 2023
  • Licensing the next-generation of nuclear reactor designs requires extensive use of Modeling and Simulation (M&S) to investigate system response to many operational conditions, identify possible accidental scenarios and predict their evolution to undesirable consequences that are to be prevented or mitigated via the deployment of adequate safety barriers. Deep Learning (DL) and Artificial Intelligence (AI) can support M&S computationally by providing surrogates of the complex multi-physics high-fidelity models used for design. However, DL and AI are, generally, low-fidelity 'black-box' models that do not assure any structure based on physical laws and constraints, and may, thus, lack interpretability and accuracy of the results. This poses limitations on their credibility and doubts about their adoption for the safety assessment and licensing of novel reactor designs. In this regard, Physics Informed Neural Networks (PINNs) are receiving growing attention for their ability to integrate fundamental physics laws and domain knowledge in the neural networks, thus assuring credible generalization capabilities and credible predictions. This paper presents the use of PINNs as surrogate models for accidental scenarios simulation in Nuclear Power Plants (NPPs). A case study of a Loss of Heat Sink (LOHS) accidental scenario in a Nuclear Battery (NB), a unique class of transportable, plug-and-play microreactors, is considered. A PINN is developed and compared with a Deep Neural Network (DNN). The results show the advantages of PINNs in providing accurate solutions, avoiding overfitting, underfitting and intrinsically ensuring physics-consistent results.

Topic Modeling to Identify Cloud Security Trends using news Data Before and After the COVID-19 Pandemic (뉴스 데이터 토픽 모델링을 활용한 COVID-19 대유행 전후의 클라우드 보안 동향 파악)

  • Soun U Lee;Jaewoo Lee
    • Convergence Security Journal
    • /
    • v.22 no.2
    • /
    • pp.67-75
    • /
    • 2022
  • Due to the COVID-19 pandemic, many companies have introduced remote work. However, the introduction of remote work has increased attacks on companies to access sensitive information, and many companies have begun to use cloud services to respond to security threats. This study used LDA topic modeling techniques by collecting news data with the keyword 'cloud security' to analyze changes in domestic cloud security trends before and after the COVID-19 pandemic. Before the COVID-19 pandemic, interest in domestic cloud security was low, so representation or association could not be found in the extracted topics. However, it was analyzed that the introduction of cloud is necessary for high computing performance for AI, IoT, and blockchain, which are IT technologies that are currently being studied. On the other hand, looking at topics extracted after the COVID-19 pandemic, it was confirmed that interest in the cloud increased in Korea, and accordingly, interest in cloud security improved. Therefore, security measures should be established to prepare for the ever-increasing usage of cloud services.

Evaluating ChatGPT's Competency in BIM Related Knowledge via the Korean BIM Expertise Exam (BIM 운용 전문가 시험을 통한 ChatGPT의 BIM 분야 전문 지식 수준 평가)

  • Choi, Jiwon;Koo, Bonsang;Yu, Youngsu;Jeong, Yujeong;Ham, Namhyuk
    • Journal of KIBIM
    • /
    • v.13 no.3
    • /
    • pp.21-29
    • /
    • 2023
  • ChatGPT, a chatbot based on GPT large language models, has gained immense popularity among the general public as well as domain professionals. To assess its proficiency in specialized fields, ChatGPT was tested on mainstream exams like the bar exam and medical licensing tests. This study evaluated ChatGPT's ability to answer questions related to Building Information Modeling (BIM) by testing it on Korea's BIM expertise exam, focusing primarily on multiple-choice problems. Both GPT-3.5 and GPT-4 were tested by prompting them to provide the correct answers to three years' worth of exams, totaling 150 questions. The results showed that both versions passed the test with average scores of 68 and 85, respectively. GPT-4 performed particularly well in categories related to 'BIM software' and 'Smart Construction technology'. However, it did not fare well in 'BIM applications'. Both versions were more proficient with short-answer choices than with sentence-length answers. Additionally, GPT-4 struggled with questions related to BIM policies and regulations specific to the Korean industry. Such limitations might be addressed by using tools like LangChain, which allow for feeding domain-specific documents to customize ChatGPT's responses. These advancements are anticipated to enhance ChatGPT's utility as a virtual assistant for BIM education and modeling automation.

Exploring Key Topics and Trends of Government-sponsored R&D Projects in Future Automotive Fields: LDA Topic Modeling Approach (미래 자동차 분야 국가연구개발사업의 주요 연구 토픽과 투자 동향 분석: LDA 토픽모델링을 중심으로)

  • Ma Hyoung Ryul;Lee Cheol-Ju
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.29 no.1
    • /
    • pp.31-48
    • /
    • 2024
  • The domestic automotive industry must consider a strategic shift from traditional automotive component manufacturing to align with future trends such as connectivity, autonomous driving, sharing, and electrification. This research conducted topic modeling on R&D projects in the future automotive sector funded by the Ministry of Trade, Industry, and Energy from 2013 to 2021. We found that topics such as sensors, communication, driver assistance technology, and battery and power technology remained consistently prominent throughout the entire period. Conversely, topics like high-strength lightweight chassis were observed only in the first period, while topics like AI, big data, and hydrogen fuel cells gained increasing importance in the second and third periods. Furthermore, this research analyzed the areas of concentrated investment for each period based on topic-specific government investment amounts and investment growth rates.

Next-Generation Neuromorphic Hardware Technology (차세대 뉴로모픽 하드웨어 기술 동향)

  • Moon, S.E.;Im, J.P.;Kim, J.H.;Lee, J.;Lee, M.Y.;Lee, J.H.;Kang, S.Y.;Hwan, C.S.;Yoo, S.M.;Kim, D.H.;Min, K.S.;Park, B.H.
    • Electronics and Telecommunications Trends
    • /
    • v.33 no.6
    • /
    • pp.58-68
    • /
    • 2018
  • A neuromorphic hardware that mimics biological perceptions and has a path toward human-level artificial intelligence (AI) was developed. In contrast with software-based AI using a conventional Von Neumann computer architecture, neuromorphic hardware-based AI has a power-efficient operation with simultaneous memorization and calculation, which is the operation method of the human brain. For an ideal neuromorphic device similar to the human brain, many technical huddles should be overcome; for example, new materials and structures for the synapses and neurons, an ultra-high density integration process, and neuromorphic modeling should be developed, and a better biological understanding of learning, memory, and cognition of the brain should be achieved. In this paper, studies attempting to overcome the limitations of next-generation neuromorphic hardware technologies are reviewed.

Analysis of vessel traffic patterns near Busan Port using AIS data (AIS 데이터를 활용한 부산항 인근 선박통항패턴 분석)

  • Hyeong-Tak Lee;Hey-Min Choi;Jeong-Seok Lee;Hyun Yang;Ik-Soon Cho
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.06a
    • /
    • pp.155-156
    • /
    • 2022
  • Efficient operation of ships can transport cargo to ports safer and faster, and reduce fuel costs. Therefore, in this study, the pattern was analyzed using AIS data of ships passing near Busan Port, a representative port in Korea. The analysis of vessel traffic patterns was approached with a grid-based node generation method, which can be used for research such as optimal route and route prediction.

  • PDF

Development of Artificial Intelligence Modeling System for Automated Application of Steel Margin in Early Modeling Process using AVEVA Marine (AVEVA Marine 강재마진의 선모델링 자동반영을 위한 인공지능 모델링 시스템 개발)

  • Kim, Nam-Hoon;Park, Yong-Suk;Kim, Jeong-Ho;Kim, Yeon-Yong;Chun, Jong-Jin;Choi, Hyung-Soon
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2013.12a
    • /
    • pp.35-41
    • /
    • 2013
  • Nowadays, automated modeling system for steel margin based on interactive user interface has been developed and applied to the production design stage. The system could increase design efficiency and minimize human error owing to recent CAD technique. However, there has been no approach to the pre-nesting design stage at all in early modeling process especially where ship model should be handled at more than two design stages using AVEVA Marine. A designer of the design stage needs artificial intelligence system beyond modeling automation when 3D model must be prepared in early modeling process using AVEVA Marine because they have focused on 2D nesting traditionally. In addition, they have a hard time figuring out the model prepared in previous design stage and modifying the model for steel purchase size in early modeling process. In this paper, artificial intelligence modeling system for automated application of steel margin in early modeling process using AVEVA Marine is developed in order to apply to the pre-nesting design stage that can detect effective segments before a calculation to find if a segment locates near block butt boundaries by filtering noise segments among lines, curves and surface intersections based on IT big data analysis.

  • PDF