• 제목/요약/키워드: AI Model

검색결과 1,465건 처리시간 0.029초

Analysis of AI Model Hub

  • Yo-Seob Lee
    • International Journal of Advanced Culture Technology
    • /
    • 제11권4호
    • /
    • pp.442-448
    • /
    • 2023
  • Artificial Intelligence (AI) technology has recently grown explosively and is being used in a variety of application fields. Accordingly, the number of AI models is rapidly increasing. AI models are adapted and developed to fit a variety of data types, tasks, and environments, and the variety and volume of models continues to grow. The need to share models and collaborate within the AI community is becoming increasingly important. Collaboration is essential for AI models to be shared and improved publicly and used in a variety of applications. Therefore, with the advancement of AI, the introduction of Model Hub has become more important, improving the sharing, reuse, and collaboration of AI models and increasing the utilization of AI technology. In this paper, we collect data on the model hub and analyze the characteristics of the model hub and the AI models provided. The results of this research can be of great help in developing various multimodal AI models in the future, utilizing AI models in various fields, and building services by fusing various AI models.

IoT 온디바이스 AI 실현을 위한 AI 모델 레포지토리 (AI Model Repository for Realizing IoT On-device AI)

  • 이석준;최충재;성낙명
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 추계학술대회
    • /
    • pp.597-599
    • /
    • 2022
  • IoT 디바이스에서 on-device AI를 수행할 때, 타겟 서비스나 디바이스의 환경에 따라 필요한 AI 모델이 달라질 수 있다. 또한, 기존 AI 모델도 federated learning과 같이 추가적인 데이터를 이용해 트레이닝을 하거나 보다 향상된 새로운 기법을 사용하는 등 업데이트가 일어날 수 있다. 이에 따라 IoT 디바이스에서 양질의 AI 서비스를 수행하기 위해서는 상황에 따라 필요한 AI 모델을 선택적으로 사용하거나 최적화된 최신 버전의 AI 모델로 업데이트 할 수 있어야 한다. 본 논문에서는 이를 지원하기 위한 AI 모델 레포지토리를 제안한다. 레포지토리는 AI 모델의 등록, 검색, 관리 및 배포를 지원하며 실사용을 위한 웹 포털을 포함한다. 제안하는 시스템의 실효성 확인을 위해 Node.js와 Vue.js로 구현하여 동작을 확인하였다.

  • PDF

기업 내 생성형 AI 시스템의 보안 위협과 대응 방안 (Security Threats to Enterprise Generative AI Systems and Countermeasures)

  • 최정완
    • 융합보안논문지
    • /
    • 제24권2호
    • /
    • pp.9-17
    • /
    • 2024
  • 본 논문은 기업 내 생성형 AI(Generative Artificial Intelligence) 시스템의 보안 위협과 대응 방안을 제시한다. AI 시스템이 방대한 데이터를 다루면서 기업의 핵심 경쟁력을 확보하는 한편, AI 시스템을 표적으로 하는 보안 위협에 대비해야 한다. AI 보안 위협은 기존 사람을 타겟으로 하는 사이버 보안 위협과 차별화된 특징을 가지므로, AI에 특화된 대응 체계 구축이 시급하다. 본 연구는 AI 시스템 보안의 중요성과 주요 위협 요인을 분석하고, 기술적/관리적 대응 방안을 제시한다. 먼저 AI 시스템이 구동되는 IT 인프라 보안을 강화하고, AI 모델 자체의 견고성을 높이기 위해 적대적 학습 (adversarial learning), 모델 경량화(model quantization) 등 방어 기술을 활용할 것을 제안한다. 아울러 내부자 위협을 감지하기 위해, AI 질의응답 과정에서 발생하는 이상 징후를 탐지할 수 있는 AI 보안 체계 설계 방안을 제시한다. 또한 사이버 킬 체인 개념을 도입하여 AI 모델 유출을 방지하기 위한 변경 통제와 감사 체계 확립을 강조한다. AI 기술이 빠르게 발전하는 만큼 AI 모델 및 데이터 보안, 내부 위협 탐지, 전문 인력 육성 등에 역량을 집중함으로써 기업은 안전하고 신뢰할 수 있는 AI 활용을 통해 디지털 경쟁력을 제고할 수 있을 것이다.

Bayesian Game Theoretic Model for Evasive AI Malware Detection in IoT

  • Jun-Won Ho
    • International journal of advanced smart convergence
    • /
    • 제13권3호
    • /
    • pp.41-47
    • /
    • 2024
  • In this paper, we deal with a game theoretic problem to explore interactions between evasive Artificial Intelligence (AI) malware and detectors in Internet of Things (IoT). Evasive AI malware is defined as malware having capability of eluding detection by exploiting artificial intelligence such as machine learning and deep leaning. Detectors are defined as IoT devices participating in detection of evasive AI malware in IoT. They can be separated into two groups such that one group of detectors can be armed with detection capability powered by AI, the other group cannot be armed with it. Evasive AI malware can take three strategies of Non-attack, Non-AI attack, AI attack. To cope with these strategies of evasive AI malware, detector can adopt three strategies of Non-defense, Non-AI defense, AI defense. We formulate a Bayesian game theoretic model with these strategies employed by evasive AI malware and detector. We derive pure strategy Bayesian Nash Equilibria in a single stage game from the formulated Bayesian game theoretic model. Our devised work is useful in the sense that it can be used as a basic game theoretic model for developing AI malware detection schemes.

AI 학습모델 및 AI모델 서빙 서버 개발을 통한 생활안전 예방 서비스 신고 이미지 자동분류 시스템 개발에 대한 연구 (A Study on the Development of an Automatic Classification System for Life Safety Prevention Service Reporting Images through the Development of AI Learning Model and AI Model Serving Server)

  • 정영식;김용운;임정일
    • 한국재난정보학회 논문집
    • /
    • 제19권2호
    • /
    • pp.432-438
    • /
    • 2023
  • 연구목적: 생활안전 예방서비스 앱에서 신고되는 이미지를 AI를 사용하여 실시간으로 위험 카테고리를 자동으로 분류하여 사용자에게 편리한 위험신고를 가능하게 하는 것을 목적으로 한다. 연구방법: 인터넷으로 상호연결되는 생활안전 예방서비스 플랫폼, 생활안전 예방서비스 앱, AI 모델 서빙 서버와 sftp 서버로 구성되는 시스템을 통하여 신고된 생활안전 이미지를 실시간으로 자동분류하며, 이때 사용되는 AI모델 생성을 위한 AI 학습 알고리즘도 개발하였다. 연구결과: 이미지를 실시간으로 AI 처리하여 자동으로 분류할 수 있게 되어, 신고자가 생활안전 관련 사항을 보다 편리하게 신고할 수 있게 되었다. 결론: 본 논문에서 제시하는 AI 이미지 자동분류 시스템은 90% 이상의 분류 정확도로 신고 이미지를 실시간으로 자동분류하여 신고자가 간편하게 생활안전 관련 이미지를 신고할 수 있게 되었으며 향후 생활안전 예방서비스 앱의 사용자의 증가에 따라 더욱 빠르고 정확한 AI 모델 개발 및 시스템 처리용량 향상이 필요하다.

A Research on Aesthetic Aspects of Checkpoint Models in [Stable Diffusion]

  • Ke Ma;Jeanhun Chung
    • International journal of advanced smart convergence
    • /
    • 제13권2호
    • /
    • pp.130-135
    • /
    • 2024
  • The Stable diffsuion AI tool is popular among designers because of its flexible and powerful image generation capabilities. However, due to the diversity of its AI models, it needs to spend a lot of time testing different AI models in the face of different design plans, so choosing a suitable general AI model has become a big problem at present. In this paper, by comparing the AI images generated by two different Stable diffsuion models, the advantages and disadvantages of each model are analyzed from the aspects of the matching degree of the AI image and the prompt, the color composition and light composition of the image, and the general AI model that the generated AI image has an aesthetic sense is analyzed, and the designer does not need to take cumbersome steps. A satisfactory AI image can be obtained. The results show that Playground V2.5 model can be used as a general AI model, which has both aesthetic and design sense in various style design requirements. As a result, content designers can focus more on creative content development, and expect more groundbreaking technologies to merge generative AI with content design.

대학생의 AI 리터러시 역량 신장을 위한 교양 교육 모델 (The Education Model of Liberal Arts to Improve the Artificial Intelligence Literacy Competency of Undergraduate Students)

  • 박윤수;이유미
    • 정보교육학회논문지
    • /
    • 제25권2호
    • /
    • pp.423-436
    • /
    • 2021
  • 다가오는 미래사회에서는 인공지능 기술이 범용기술이 될 것이며, 인공지능 역량이 필수 역량이 될 것으로 예측되고 있다. 이에 전 세계 주요 국가들은 AI 경쟁력을 갖추기 위해 AI 전문가를 육성하고, 누구나 AI를 이해하고, 설명하며, 응용할 수 있는 인프라와 교육 환경을 갖추기 위해 노력하고 있다. 본 연구에서는 국내·외 인공지능 교육의 선행 연구 사례와 함께 서울 소재 31개 종합대학의 SW 교양 교육 현황을 조사했으며, 이를 바탕으로 SW 교양 교육과 전문적인 AI 교육을 연계할 수 있는 AI 리터러시 교육 모델이 필요하다는 결론을 도출하였다. 이에 KOCW에 공개된 20개의 AI 관련 강좌를 AI 리터러시 역량을 중심으로 분류하였으며, 분류된 결과를 바탕으로 대학생을 위한 AI 리터러시 교양 교육 모델을 제안하고자 한다. 제안하는 AI 리터러시 교육 모델은 기존의 이론적 교육 모델이나 컴퓨터과학적 교육 모델과는 달리 인문학적 소양과 함께 인공지능을 체험할 수 있는 AI·SW 융합 교육 모델이다. 제안하는 AI 리터러시 교육 모델이 AI의 확산에 기여할 수 있기를 기대한다.

엣지 기반 미디어 서비스 구성을 위한 AI모델 정보 관리구조의 제안 (Proposed of AI-Model Information Management Structure for Media Service Construction based on Edge)

  • 염정철;금승우
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2022년도 하계학술대회
    • /
    • pp.84-86
    • /
    • 2022
  • 최근 미디어, 금융 등 다양한 분야의 기업들이 AI를 활용해 제공하는 서비스가 늘어남에 따라 학습된 모델을 엣지 자원에 배포하여 기능을 제공하는 서비스형태 또한 늘어나고 있다. AI-Application이 동작하기 위해서는 AI-Model 파일뿐 아니라 동작을 위한 설정 파일들이 필요하여 AI-Application이 사용 중인 AI-Model의 정보를 수집, 관리하는 것은 중요한 이슈라고 할 수 있다. 하지만 단일 서비스서버에서 동작하는 형태가 아닌 각 자원이 산재되어 다양한 형태로 서비스를 제공하는 엣지컴퓨팅의 구조적인 특성상 AI-Application의 기존 서비스구조, 기능을 수정하지 않고 정보를 수집하는 과정은 다양한 문제에 부딪치게 된다. 이에 따라 본 논문에서는 기존 서비스구조를 변경하지 않고 독립적으로 AI-Application에서 사용중인 AI-Model의 정보를 파악하고, 사용자 요청에 대응할 수 있는 관리구조를 제안한다.

  • PDF

Zero-shot learning 기반 대규모 언어 모델 한국어 품질 비교 분석 (Comparative analysis of large language model Korean quality based on zero-shot learning)

  • 허윤아;소아람;이태민;신중민;박정배;박기남;안성민;임희석
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2023년도 제35회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.722-725
    • /
    • 2023
  • 대규모 언어 모델(LLM)은 대규모의 데이터를 학습하여 얻은 지식을 기반으로 텍스트와 다양한 콘텐츠를 인식하고 요약, 번역, 예측, 생성할 수 있는 딥러닝 알고리즘이다. 초기 공개된 LLM은 영어 기반 모델로 비영어권에서는 높은 성능을 기대할 수 없었으며, 이에 한국, 중국 등 자체적 LLM 연구개발이 활성화되고 있다. 본 논문에서는 언어가 LLM의 성능에 영향을 미치는가에 대하여 한국어 기반 LLM과 영어 기반 LLM으로 KoBEST의 4가지 Task에 대하여 성능비교를 하였다. 그 결과 한국어에 대한 사전 지식을 추가하는 것이 LLM의 성능에 영향을 미치는 것을 확인할 수 있었다.

  • PDF

국방 AI 소요의 중복 최적화를 위한 AI 능력(Capability)의 역할 개념모델 연구 (A study on a conceptual model of AI Capability's role to optimize duplication of defense AI requirements)

  • 박승규;이중윤;이주연
    • 시스템엔지니어링학술지
    • /
    • 제19권1호
    • /
    • pp.91-106
    • /
    • 2023
  • Multidimensional efforts such as budgeting, organizing, and institutionalizing are being carried out for the adoption of defense AI. However, there is little interest in eliminating duplication of defense resources that may occur during the AI adoption. In this study, we propose a theoretical conceptual model to optimize duplication of AI technology that may occur during the AI adoption in the vast defense field. For a systematic approach, the JCA of the US DoD and system abstraction method are applied, and the IMO logical structure is used to decompose AI requirements and identify duplication. As a result of analyzing the effectiveness of our conceptual model through six example defense AI requirements, it was found that the amount of requirements of data and AI technologies could be reduced by up to 41.7% and 70%, respectively, and estimated costs could be reduced by up to 35.5%.