IJACT 23-12-53

Analysis of AI Model Hub

Yo-Seob Lee

Professor, School of ICT Convergence, Pyeongtaek University yslee@ptu.ac.kr

Abstract

Artificial Intelligence (AI) technology has recently grown explosively and is being used in a variety of application fields. Accordingly, the number of AI models is rapidly increasing. AI models are adapted and developed to fit a variety of data types, tasks, and environments, and the variety and volume of models continues to grow. The need to share models and collaborate within the AI community is becoming increasingly important. Collaboration is essential for AI models to be shared and improved publicly and used in a variety of applications. Therefore, with the advancement of AI, the introduction of Model Hub has become more important, improving the sharing, reuse, and collaboration of AI models and increasing the utilization of AI technology. In this paper, we collect data on the model hub and analyze the characteristics of the model hub and the AI models provided. The results of this research can be of great help in developing various multimodal AI models in the future, utilizing AI models in various fields, and building services by fusing various AI models.

Keywords: Machine Learning Model, Model Hub, AI Model, HuggingFace, Kaggle, TensorFlow Hub

1. Introduction

Model Hub is a centralized storage and sharing platform for AI models, providing a variety of benefits to AI researchers, developers, and enterprises. This promotes model sharing, reuse, collaboration, and knowledge sharing, advancing AI technology and improving the efficiency of collaborative projects. Model reuse saves development time and costs, and helps improve and optimize model performance. It is also used as an AI education and learning resource and contributes to knowledge sharing and knowledge dissemination in the community. It plays an important role in enhancing security and compliance and safely managing models. Model Hub is a key element that supports progress and innovation in the AI ecosystem [1-3].

In this paper, we collect data on Model Hub and compare and analyze the characteristics of Model Hub.

2. AI Model Hub

Model Hub refers to an online platform or service that allows you to search, share, and utilize machine

Corresponding Author: <u>yslee@ptu.ac.kr</u>

Professor, School of ICT Convergence, Pyeongtaek University, Korea

Copyright© 2023 by The International Promotion Agency of Culture Technology. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0)

Manuscript received: October 9, 2023 / revised: October 25, 2023 / accepted: November 30, 2023

Tel:+82-31-659-8369, Fax: +82-31-659-8011

learning and deep learning models. Model Hub enables data scientists, researchers, engineers, and developers to share and discover models for a variety of machine learning tasks [4]. These platforms are used for the following main purposes:

- Model sharing: Model developers and researchers can share their machine learning models with other users by uploading them to Model Hub. This promotes model reuse and collaboration.

- Model Search: Users can search for desired machine learning models in Model Hub and utilize them for their projects or tasks. This helps reduce model development time and increases efficiency.

- Take advantage of pretrained models: Model Hub provides pretrained models that you can take, finetune, and use in your own tasks. This is a key element of transfer learning.

- Model evaluation and testing: Model Hub is used to evaluate and test various models. Users can compare different models and choose the most suitable one.

- Open source community: Model Hub is part of an open source community, providing a platform to share and collaborate on models and code. This accelerates model development and innovation.

Model hubs with many pre-trained models have become a cornerstone of deep learning [5]. Model Hub provides models of various types and purposes, and this platform helps you utilize and share machine learning and deep learning models more effectively.

3. AI Model Hub Sites

3.1 HuggingFace

Hugging Face refers to companies and communities active in the fields of Natural Language Processing (NLP) and machine learning. These companies and communities develop and share NLP models and libraries, providing innovative tools and resources for AI research and applications [6].

Hugging Face develops and publicly provides various NLP models and libraries. One of the most popular libraries is "Transformers", which allows you to easily leverage pre-trained NLP models.

Figure 1 shows the Model Page of Hugging Face. The left side of the Model Page shows various model types and sub-models. The right side of the model page displays various cases of the selected sub-model type.

😕 Hugging Face 🔍 Search models, datase	ts, users
Tasks Libraries Datasets Languages Licenses Other	Models 377,405 Filter by name
Q Filter Tasks by name	HuggingFaceH4/zephyr-7b-beta Fext Generation - Updated 3 days ago - ± 9.33k - ♡ 310
Multimodal	
Feature Extraction Text-to-Image Image-to-Text Text-to-Video	⊗ segmind/SSD-1B IP Text-to-Image + Updated 2 days ago + ± 25k + ♥ 298 segmind/SSD-1B
 Visual Question Answering Document Question Answering 	<pre> jinaai/jina-embeddings-v2-base-en III Feature Extraction - Updated 4 days ago - ± 31.4k + ♡ 290</pre>
ଙ୍କ Graph Machine Learning Computer Vision	 — adept/fuyu-8b ③ Text Generation - Updated 8 days ago - ≥ 19.3k - ♡ 585
Opposite Image Classification Body Object Detection Image Segmentation	THUDM/chatglm3-6b Updated 3 days age + ₹ 7.12k + ♡ 169
Image-to-Image	
Unconditional Image Generation Video Classification	▶ mistralai/Mistral-7B-v0.1 ③ Text Generation • Updated 18 days ago • ± 283k • ♡ 1.55k
Zero-Shot Image Classification	☞ CausalLM/14B

Figure 1. HuggingFace's model page

3.2 Kaggle

Kaggle is a data science and machine learning community and competition platform, an online platform for data scientists, machine learning engineers, researchers, and other data users [7].

Kaggle Models provides a way to discover, use, and (soon) share public pre-trained models for machine learning. Kaggle Models is a repository of TensorFlow and PyTorch pre-trained models that can be easily used in Kaggle Competition notebooks. Like datasets, Kaggle models also feature community activity that increases the usefulness of the models. Every model page includes usage statistics such as discussions, public notebooks, downloads, and upvotes, which make the model more useful.

Figure 2 shows Kaggle's Model Page. There are various types of models on the model page, and actual models are provided for each model type.

≡	kaggle	Q Search		Sign In Register
+	Create	Models		* @* @
Ø	Home			
ዋ	Competitions	Search and discover hundreds of trained, machine learning models in one place.	ready-to-deploy	
	Datasets			
ሔ	Models			
<>	Code	Q Search Models		
	Discussions			
\odot	Learn	표 All Filters II All Models D Tas	sk 🗸 🏠 Data Type 🗸 🔇 Framewor	k V & Publisher V 🛱 Langue 🕻
\sim	More	Trending Models		See All
		CodeLlama	marathi-numbers	DePlot
		Meta	Sameer Mahajan	Google
		18 Variations · 6 Notebooks	2 Variations · 2 Notebooks	1 Variation - 6 Notebooks
		Code Llama is a family of large language	Audio model for marathi numbers	Convert a plot or a chart to a table of nu

Figure 2. Kaggle's model page

3.3 Tensorflow Hub

TensorFlow Hub is an open source library based on TensorFlow, and is a platform that allows you to easily share and reuse pre-trained models and model components. Through TensorFlow Hub, you can share and import various deep learning models, model parameters, embeddings, tensors, etc. and use them in your TensorFlow project. You can download the tensorflow_hub library and reuse it in your TensorFlow programs with minimal code [8].

Figure 3 shows the Model Page of TensorFlow Hub. There are various types of models on the Model Page. The left side of the Model Paged shows models in various fields.

	Search for models, collections & publi	shers	٩
Quick links	Text Problem Don	nains	
Home All collections All models	Embedding (211)	Language model (98)	Preprocessing (16)
All publishers Problem domains		See all	
Text	Image Problem Do	omains	
Video Audio	Classification (405)	Feature vector (217)	Object detection (101)
Model format • TF.js TFLite		See all	

Figure 3. Tensorflow Hub's model page

4. Comparison of Model Hubs

This section compares different model types and subtypes from Model Hubs such as HuggingFace, Kaggle and TensorFlow Hub. Table 1 shows model types of Model Hubs. Model Hub's AI models support image, text, video, audio, multimodal, and tabular types.

Tool	Image	Text	Video	Audio	Multimodal	Tabular
Hugging Face	Yes	Yes	Yes	Yes	Yes	Yes
Kaggle	Yes	Yes	Yes	Yes	Yes	No
TensorFlow Hub	Yes	Yes	Yes	Yes	No	No

Table 1. Model types of model hubs

Most Model Hubs support image, text, video, and audio models, and among them, Hugging Face supports Multimodal and Tabular. Most Model Hubs support image, text, video, and audio models, and among them, Hugging Face supports Multimodal and Tabular.

A multimodal model is an artificial intelligence model that processes and handles several different types of media data, such as images, text, and voice. These models can understand and utilize multiple types of data simultaneously to perform rich and diverse recognition and generation tasks. The Tabular model is one of the models used in the fields of machine learning and deep learning, and is especially useful for dealing with structured data.

Tabular data generally refers to data organized in a table or database format and has a data structure consisting of columns and rows. Tabular models are used to analyze and predict such tabular data.

Table 2 shows model types and subtypes of Model Hubs. Table 2 shows the model types and subtypes in the model hub. Depending on each subtype, it represents detailed models that process specific tasks within

the scope of the type.

Туре	Hugging Face	Kaggle	TensorFlow Hub
Image	Depth Estimation	Image augmentation	Classification
	Object detection	Image super resolution	Feature vector
	Image classification	Image segmentation	Object detection
	Image segmentation	Image text recognition	
	Image-to-image	Object detection	
	Unconditional image		
	generation		
	Zero-shot image classification		
Text	Text classification	Text preprocessing	Embedding
	Token classification	Text classification	Language model
	Table question answering	Question answering	Preprocessing
	Zero-shot classification	Text generation	
	Translation		
	Summarization		
	Conversational		
	Text generation		
	Text2Text generation		
	Fill-Mask		
	Sentence similarity		
Video	Video classification	Video generation	Classification
		Video text	Feature Extraction
		Video audio text	Generation
		Pose detection	
Audio	Text-to-speech	Audio synthesis	Embedding
	Text-to-audio		Event classification
	Automatic speech recognition		Command detection
	Audi-to-Audio		
	Audio classification		
	Voice Activity detection		
Multimodal	Feature extraction	Speech-to-text	
	Text-to-Image	Text-to-mel	
	Image-to-Text	Video Audio Text	
	Text-to-Video		
	Visual Question Answering		
	Document Question answering		
	Graph machine learning		
Tabular	Tabular classification		
	Tabular regression		
Reinforcement	Reinforcement Learning	l	I

Table 2. Model types and subtypes of model hubs

Learning Robotics

The fact that there are many model subtypes in Hugging Face shows that the community is that active. Hugging Face's text model supports subtypes such as Translation, Summarization, Text generation, Text2Text generation, and Sentence similarity that are not found in other Model Hubs.

Translation is a technology that automatically translates text from one language into another.

Summarization refers to the process of concisely summarizing a long document or text. Summarized content improves reading comprehension by removing unnecessary details while preserving the important content of the original text.

Text Generation is used to automatically write text or create stories based on given hints or context. For example, writing an article, creating a screenplay, or writing a novel.

Text2Text Generation refers to the operation of converting one text into another text. This operation is used for a variety of conversion tasks. For example, converting questions into answers or summaries into original text.

Sentence Similarity is the task of measuring the similarity between two sentences or text fragments. This task is used to determine semantic or structural similarity between two sentences. For example, it can be used to measure similarity between documents or to evaluate the relevance of search results.

Another important result is the emergence of many multimodal models. A multimodal model refers to an artificial intelligence model that processes and integrates multiple types of media (data types). These models can simultaneously understand and process multiple media types, including text, images, audio, and video, and extract or generate useful information from these diverse data sources. Text-to-Image, Image-to-Text, and Text-to-Video models are subfields of multimodal models, which are models that perform conversions between different media types.

The availability of AI model hubs has revolutionized the artificial intelligence development environment. The AI model hub provides a wealth of pre-trained models, code examples, and resources, allowing developers to leverage cutting-edge models and build innovative AI applications more efficiently [9].

5. Conclusion

In this paper, we investigated various features of Model Hubs such as HuggingFace, Kaggle and TensorFlow Hub. Advances in AI have made the introduction of Model Hub more important. The explosive growth of AI models has increased the need to share and collaborate on models within the AI community. Reuse and optimization of models are important, and it is more efficient to find and reuse existing models than to recreate them from scratch. Sharing and using AI models maximizes industry and societal impact and provides valuable resources for AI teaching and learning. The security and compliance of your models is also important, and Model Hub helps you securely store and manage your models and ensure security and compliance. For this reason, advances in AI are increasing the need for Model Hub. We collected and analyzed data on the most popular types of model hubs, the various types provided by those model hubs, and the detailed processing areas of those types. The results of this research can be of great help in developing various multi modal AI models in the future, utilizing AI models in various fields, and building services by fusing various AI models.

References

- Y. Lee, "Analysis on trends of machine learning-as-a-service," Vol. 6, No. 4, International Journal of Advanced Culture Technology, 2018. DOI: https://doi.org/10.17703//IJACT2018.6.4.303
- [2] Y. Lee, et al., "Analysis of Open-Source Hyperparameter Optimization Software Trends," Vol.7, No.4,

International Journal of Advanced Culture Technology, 2019. DOI: https://doi.org/10.17703/IJACT.2019.7.4.56

- [3] Y. Lee, "Analysis of Automatic Machine Learning Solution Trends of Startups," Vol.8, No.2, International Journal of Advanced Culture Technology, 2020. DOI: https://doi.org/10.17703/IJACT.202 0.8.2.297
- [4] MLOps Landscape in 2023: Top Tools and Platforms, *https://neptune.ai/blog/mlops-tools-platforms-lan dscape/*
- [5] K. You, et al., "Ranking and Tuning Pre-trained Models: A New Paradigm for Exploiting Model Hubs," Journal of Machine Learning Research Vol. 23, 2022. https://www.jmlr.org/papers/volume23/21-1251/2 1-1251.pdf
- [6] Hugging Face, https://huggingface.co/models/
- [7] Kaggle, *https://www.kaggle.com/models/*
- [8] TensorFlow Hub, *https://tfhub.dev/*
- [9] Fhirfly, "Exploring the Best AI Model Repositories: Unleashing the Power of Open-Source AI," https://medium.com/@fhirfly/title-exploring-the-best-ai-model-repositories-unleashing-the-power-of-op en-source-ai-4ad165bb8077