• Title/Summary/Keyword: AI Model

Search Result 1,465, Processing Time 0.03 seconds

Analysis of AI Model Hub

  • Yo-Seob Lee
    • International Journal of Advanced Culture Technology
    • /
    • v.11 no.4
    • /
    • pp.442-448
    • /
    • 2023
  • Artificial Intelligence (AI) technology has recently grown explosively and is being used in a variety of application fields. Accordingly, the number of AI models is rapidly increasing. AI models are adapted and developed to fit a variety of data types, tasks, and environments, and the variety and volume of models continues to grow. The need to share models and collaborate within the AI community is becoming increasingly important. Collaboration is essential for AI models to be shared and improved publicly and used in a variety of applications. Therefore, with the advancement of AI, the introduction of Model Hub has become more important, improving the sharing, reuse, and collaboration of AI models and increasing the utilization of AI technology. In this paper, we collect data on the model hub and analyze the characteristics of the model hub and the AI models provided. The results of this research can be of great help in developing various multimodal AI models in the future, utilizing AI models in various fields, and building services by fusing various AI models.

AI Model Repository for Realizing IoT On-device AI (IoT 온디바이스 AI 실현을 위한 AI 모델 레포지토리)

  • Lee, Seokjun;Choe, Chungjae;Sung, Nakmyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.597-599
    • /
    • 2022
  • When IoT device performs on-device AI, the device is required to use various AI models selectively according to target service and surrounding environment. Also, AI model can be updated by additional training such as federated learning or adapting the improved technique. Hence, for successful on-device AI, IoT device should acquire various AI models selectively or update previous AI model to new one. In this paper, we propose AI model repository to tackle this issue. The repository supports AI model registration, searching, management, and deployment along with dashboard for practical usage. We implemented it using Node.js and Vue.js to verify it works well.

  • PDF

Security Threats to Enterprise Generative AI Systems and Countermeasures (기업 내 생성형 AI 시스템의 보안 위협과 대응 방안)

  • Jong-woan Choi
    • Convergence Security Journal
    • /
    • v.24 no.2
    • /
    • pp.9-17
    • /
    • 2024
  • This paper examines the security threats to enterprise Generative Artificial Intelligence systems and proposes countermeasures. As AI systems handle vast amounts of data to gain a competitive edge, security threats targeting AI systems are rapidly increasing. Since AI security threats have distinct characteristics compared to traditional human-oriented cybersecurity threats, establishing an AI-specific response system is urgent. This study analyzes the importance of AI system security, identifies key threat factors, and suggests technical and managerial countermeasures. Firstly, it proposes strengthening the security of IT infrastructure where AI systems operate and enhancing AI model robustness by utilizing defensive techniques such as adversarial learning and model quantization. Additionally, it presents an AI security system design that detects anomalies in AI query-response processes to identify insider threats. Furthermore, it emphasizes the establishment of change control and audit frameworks to prevent AI model leakage by adopting the cyber kill chain concept. As AI technology evolves rapidly, by focusing on AI model and data security, insider threat detection, and professional workforce development, companies can improve their digital competitiveness through secure and reliable AI utilization.

Bayesian Game Theoretic Model for Evasive AI Malware Detection in IoT

  • Jun-Won Ho
    • International journal of advanced smart convergence
    • /
    • v.13 no.3
    • /
    • pp.41-47
    • /
    • 2024
  • In this paper, we deal with a game theoretic problem to explore interactions between evasive Artificial Intelligence (AI) malware and detectors in Internet of Things (IoT). Evasive AI malware is defined as malware having capability of eluding detection by exploiting artificial intelligence such as machine learning and deep leaning. Detectors are defined as IoT devices participating in detection of evasive AI malware in IoT. They can be separated into two groups such that one group of detectors can be armed with detection capability powered by AI, the other group cannot be armed with it. Evasive AI malware can take three strategies of Non-attack, Non-AI attack, AI attack. To cope with these strategies of evasive AI malware, detector can adopt three strategies of Non-defense, Non-AI defense, AI defense. We formulate a Bayesian game theoretic model with these strategies employed by evasive AI malware and detector. We derive pure strategy Bayesian Nash Equilibria in a single stage game from the formulated Bayesian game theoretic model. Our devised work is useful in the sense that it can be used as a basic game theoretic model for developing AI malware detection schemes.

A Study on the Development of an Automatic Classification System for Life Safety Prevention Service Reporting Images through the Development of AI Learning Model and AI Model Serving Server (AI 학습모델 및 AI모델 서빙 서버 개발을 통한 생활안전 예방 서비스 신고 이미지 자동분류 시스템 개발에 대한 연구)

  • Young Sic Jeong;Yong-Woon Kim;Jeongil Yim
    • Journal of the Society of Disaster Information
    • /
    • v.19 no.2
    • /
    • pp.432-438
    • /
    • 2023
  • Purpose: The purpose of this study is to enable users to conveniently report risks by automatically classifying risk categories in real time using AI for images reported in the life safety prevention service app. Method: Through a system consisting of a life safety prevention service platform, life safety prevention service app, AI model serving server and sftp server interconnected through the Internet, the reported life safety images are automatically classified in real time, and the AI model used at this time An AI learning algorithm for generation was also developed. Result: Images can be automatically classified by AI processing in real time, making it easier for reporters to report matters related to life safety.Conclusion: The AI image automatic classification system presented in this paper automatically classifies reported images in real time with a classification accuracy of over 90%, enabling reporters to easily report images related to life safety. It is necessary to develop faster and more accurate AI models and improve system processing capacity.

A Research on Aesthetic Aspects of Checkpoint Models in [Stable Diffusion]

  • Ke Ma;Jeanhun Chung
    • International journal of advanced smart convergence
    • /
    • v.13 no.2
    • /
    • pp.130-135
    • /
    • 2024
  • The Stable diffsuion AI tool is popular among designers because of its flexible and powerful image generation capabilities. However, due to the diversity of its AI models, it needs to spend a lot of time testing different AI models in the face of different design plans, so choosing a suitable general AI model has become a big problem at present. In this paper, by comparing the AI images generated by two different Stable diffsuion models, the advantages and disadvantages of each model are analyzed from the aspects of the matching degree of the AI image and the prompt, the color composition and light composition of the image, and the general AI model that the generated AI image has an aesthetic sense is analyzed, and the designer does not need to take cumbersome steps. A satisfactory AI image can be obtained. The results show that Playground V2.5 model can be used as a general AI model, which has both aesthetic and design sense in various style design requirements. As a result, content designers can focus more on creative content development, and expect more groundbreaking technologies to merge generative AI with content design.

The Education Model of Liberal Arts to Improve the Artificial Intelligence Literacy Competency of Undergraduate Students (대학생의 AI 리터러시 역량 신장을 위한 교양 교육 모델)

  • Park, Youn-Soo;Yi, Yumi
    • Journal of The Korean Association of Information Education
    • /
    • v.25 no.2
    • /
    • pp.423-436
    • /
    • 2021
  • In the future, artificial intelligence (AI) technology is expected to become a general-purpose technology (GPT), and it is predicted that AI competency will become an essential competency. Several nations around the world are fostering experts in the field of AI to achieve technological proficiency while working to develop the necessary infrastructure and educational environment. In this study, we investigated the status of software education at the liberal arts level at 31 universities in Seoul, along with precedents from domestic and foreign AI education research. Based on this, we concluded that an AI literacy education model is needed to link software education at the liberal arts level with professional AI education. And we classified 20 AI-related lectures released in the KOCW according to the AI literacy competencies required; based on the results of this classification, we propose a model for AI literacy education in the liberal arts for undergraduate students. The proposed AI literacy education model may be considered as AI·SW convergence to experience AI along with literacy in the humanities, deviating from the existing theoretical and computer-science-based approach. We expect that our proposed AI literacy education model can contribute to the proliferation of AI.

Proposed of AI-Model Information Management Structure for Media Service Construction based on Edge (엣지 기반 미디어 서비스 구성을 위한 AI모델 정보 관리구조의 제안)

  • Yeom, Jeongcheol;Kum, Seungwoo
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2022.06a
    • /
    • pp.84-86
    • /
    • 2022
  • 최근 미디어, 금융 등 다양한 분야의 기업들이 AI를 활용해 제공하는 서비스가 늘어남에 따라 학습된 모델을 엣지 자원에 배포하여 기능을 제공하는 서비스형태 또한 늘어나고 있다. AI-Application이 동작하기 위해서는 AI-Model 파일뿐 아니라 동작을 위한 설정 파일들이 필요하여 AI-Application이 사용 중인 AI-Model의 정보를 수집, 관리하는 것은 중요한 이슈라고 할 수 있다. 하지만 단일 서비스서버에서 동작하는 형태가 아닌 각 자원이 산재되어 다양한 형태로 서비스를 제공하는 엣지컴퓨팅의 구조적인 특성상 AI-Application의 기존 서비스구조, 기능을 수정하지 않고 정보를 수집하는 과정은 다양한 문제에 부딪치게 된다. 이에 따라 본 논문에서는 기존 서비스구조를 변경하지 않고 독립적으로 AI-Application에서 사용중인 AI-Model의 정보를 파악하고, 사용자 요청에 대응할 수 있는 관리구조를 제안한다.

  • PDF

Comparative analysis of large language model Korean quality based on zero-shot learning (Zero-shot learning 기반 대규모 언어 모델 한국어 품질 비교 분석)

  • Yuna Hur;Aram So;Taemin Lee;Joongmin Shin;JeongBae Park;Kinam Park;Sungmin Ahn;Heuiseok Lim
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.722-725
    • /
    • 2023
  • 대규모 언어 모델(LLM)은 대규모의 데이터를 학습하여 얻은 지식을 기반으로 텍스트와 다양한 콘텐츠를 인식하고 요약, 번역, 예측, 생성할 수 있는 딥러닝 알고리즘이다. 초기 공개된 LLM은 영어 기반 모델로 비영어권에서는 높은 성능을 기대할 수 없었으며, 이에 한국, 중국 등 자체적 LLM 연구개발이 활성화되고 있다. 본 논문에서는 언어가 LLM의 성능에 영향을 미치는가에 대하여 한국어 기반 LLM과 영어 기반 LLM으로 KoBEST의 4가지 Task에 대하여 성능비교를 하였다. 그 결과 한국어에 대한 사전 지식을 추가하는 것이 LLM의 성능에 영향을 미치는 것을 확인할 수 있었다.

  • PDF

A study on a conceptual model of AI Capability's role to optimize duplication of defense AI requirements (국방 AI 소요의 중복 최적화를 위한 AI 능력(Capability)의 역할 개념모델 연구)

  • Seung Kyu Park;Joong Yoon Lee;Joo Yeoun Lee
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.19 no.1
    • /
    • pp.91-106
    • /
    • 2023
  • Multidimensional efforts such as budgeting, organizing, and institutionalizing are being carried out for the adoption of defense AI. However, there is little interest in eliminating duplication of defense resources that may occur during the AI adoption. In this study, we propose a theoretical conceptual model to optimize duplication of AI technology that may occur during the AI adoption in the vast defense field. For a systematic approach, the JCA of the US DoD and system abstraction method are applied, and the IMO logical structure is used to decompose AI requirements and identify duplication. As a result of analyzing the effectiveness of our conceptual model through six example defense AI requirements, it was found that the amount of requirements of data and AI technologies could be reduced by up to 41.7% and 70%, respectively, and estimated costs could be reduced by up to 35.5%.