• Title/Summary/Keyword: AI Importance

Search Result 320, Processing Time 0.028 seconds

The Impact of Customer Regulatory Focus and Familiarity with Generative AI-based Chatbot on Self-Disclosure Intentions: Focusing on Privacy Calculus Theory (고객의 조절초점 성향과 생성형 AI 기반 챗봇에 대한 친숙도가 개인정보 제공의도에 미치는 영향: 프라이버시 계산이론을 중심으로)

  • Eun Young Park
    • Knowledge Management Research
    • /
    • v.25 no.2
    • /
    • pp.49-68
    • /
    • 2024
  • Increasing concerns regarding personal data privacy have complicated the acquisition of customer data through online marketing. This study investigates factors influencing customers' willingness to disclose information via a generative AI-based chatbot. Drawing on privacy calculus theory and regulatory focus theory, we explore how customer regulatory focus and familiarity with the generative AI-based chatbot shape disclosure intentions. Our study, involving 473 participants, reveals that low familiarity with the chatbot leads individuals with a prevention focus to perceive higher privacy risks and lower perceived usefulness compared to those with a promotion focus. However, with high familiarity, these differences diminish. Moreover, individuals with a promotion focus show a greater inclination to disclose information when familiarity with the generative AI-based chatbot is low, whereas this regulatory focus does not significantly impact disclosure intentions when familiarity is high. Perceived privacy risks mediate these relationships, underscoring the importance of understanding familiarity with the generative AI-based chatbot in facilitating personal information disclosure.

Development of checklist questions to measure AI capabilities of elementary school students (초등학생의 AI 역량 측정을 위한 체크리스트 문항 개발)

  • Eun Chul Lee;YoungShin Pyun
    • Journal of Internet of Things and Convergence
    • /
    • v.10 no.3
    • /
    • pp.7-12
    • /
    • 2024
  • The development of artificial intelligence technology changes the social structure and educational environment, and the importance of artificial intelligence capabilities continues to increase. This study was conducted with the purpose of developing a checklist of questions to measure AI capabilities of elementary school students. To achieve the purpose of the study, a Delphi survey was used to analyze literature and develop questions. For literature analysis, two domestic studies, five international studies, and the Ministry of Education's curriculum report were collected through a search. The collected data was analyzed to construct core competency measurement elements. The core competency measurement elements consisted of understanding artificial intelligence (6 elements), artificial intelligence thinking (4 elements), artificial intelligence ethics (4 elements), and artificial intelligence social-emotion (3 elements). Considering the knowledge, skills, and attitudes of the constructed measurement elements, 19 questions were developed. The developed questions were verified through the first Delphi survey, and 7 questions were revised according to the revision opinions. The validity of 19 questions was verified through the second Delphi survey. The checklist items developed in this study are measured by teacher evaluation based on performance and behavioral observations rather than a self-report questionnaire. This has the implication that the measurement results of competency are raised to a reliable level.

An Artificial Intelligence-Based Automated Echocardiographic Analysis: Enhancing Efficiency and Prognostic Evaluation in Patients With Revascularized STEMI

  • Yeonggul Jang;Hyejung Choi;Yeonyee E. Yoon;Jaeik Jeon;Hyejin Kim;Jiyeon Kim;Dawun Jeong;Seongmin Ha;Youngtaek Hong;Seung-Ah Lee;Jiesuck Park;Wonsuk Cho;Hong-Mi Choi;In-Chang Hwang;Goo-Yeong Cho;Hyuk-Jae Chang
    • Korean Circulation Journal
    • /
    • v.54 no.11
    • /
    • pp.743-756
    • /
    • 2024
  • Background and Objectives: Although various cardiac parameters on echocardiography have clinical importance, their measurement by conventional manual methods is time-consuming and subject to variability. We evaluated the feasibility, accuracy, and predictive value of an artificial intelligence (AI)-based automated system for echocardiographic analysis in patients with ST-segment elevation myocardial infarction (STEMI). Methods: The AI-based system was developed using a nationwide echocardiographic dataset from five tertiary hospitals, and automatically identified views, then segmented and tracked the left ventricle (LV) and left atrium (LA) to produce volume and strain values. Both conventional manual measurements and AI-based fully automated measurements of the LV ejection fraction and global longitudinal strain, and LA volume index and reservoir strain were performed in 632 patients with STEMI. Results: The AI-based system accurately identified necessary views (overall accuracy, 98.5%) and successfully measured LV and LA volumes and strains in all cases in which conventional methods were applicable. Inter-method analysis showed strong correlations between measurement methods, with Pearson coefficients ranging 0.81-0.92 and intraclass correlation coefficients ranging 0.74-0.90. For the prediction of clinical outcomes (composite of all-cause death, re-hospitalization due to heart failure, ventricular arrhythmia, and recurrent myocardial infarction), AI-derived measurements showed predictive value independent of clinical risk factors, comparable to those from conventional manual measurements. Conclusions: Our fully automated AI-based approach for LV and LA analysis on echocardiography is feasible and provides accurate measurements, comparable to conventional methods, in patients with STEMI, offering a promising solution for comprehensive echocardiographic analysis, reduced workloads, and improved patient care.

Prediction of Barge Ship Roll Response Amplitude Operator Using Machine Learning Techniques

  • Lim, Jae Hwan;Jo, Hyo Jae
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.3
    • /
    • pp.167-179
    • /
    • 2020
  • Recently, the increasing importance of artificial intelligence (AI) technology has led to its increased use in various fields in the shipbuilding and marine industries. For example, typical scenarios for AI include production management, analyses of ships on a voyage, and motion prediction. Therefore, this study was conducted to predict a response amplitude operator (RAO) through AI technology. It used a neural network based on one of the types of AI methods. The data used in the neural network consisted of the properties of the vessel and RAO values, based on simulating the in-house code. The learning model consisted of an input layer, hidden layer, and output layer. The input layer comprised eight neurons, the hidden layer comprised the variables, and the output layer comprised 20 neurons. The RAO predicted with the neural network and an RAO created with the in-house code were compared. The accuracy was assessed and reviewed based on the root mean square error (RMSE), standard deviation (SD), random number change, correlation coefficient, and scatter plot. Finally, the optimal model was selected, and the conclusion was drawn. The ultimate goals of this study were to reduce the difficulty in the modeling work required to obtain the RAO, to reduce the difficulty in using commercial tools, and to enable an assessment of the stability of medium/small vessels in waves.

RC model control subjected to earthquakes using piecewise Lyapunov criterion in ambient intelligence

  • ZY Chen;Ruei-Yuan Wang;Yahui Meng;Timothy Chen
    • Smart Structures and Systems
    • /
    • v.34 no.3
    • /
    • pp.171-179
    • /
    • 2024
  • This paper proposes a composite form of fuzzy modal control plan based on a piecewise Lyapunov criterion in ambient intelligence (AI). In some cases, these goals are of equal importance and cannot be easily prioritized. Environmental intelligence systems are being developed to handle multi-objective problems related to daily activities. This paper proposes a context-aware structure to provide strategies in an AI control system. Based on context data from sensors distributed throughout the environment, the modelled system recognizes the individual state, makes supporting decisions with no designation for control targets, and executes operations that is based on the environment feedbacks. To validate the developed model, an example using the system to deal with a practical engineering structural stability of analysis and control is described. The objectives of this paper are access to adequate, safe and affordable housing and basic services, promotion of inclusive and sustainable urbanization and participation, implementation of sustainable and disaster-resilient buildings, sustainable planning and management of human settlement. Therefore, the goal is believed to be achieved in the near future through the continuous development of AI and control theory for a better life from the environment and built systems.

A Curricular Study on AI & ES in Library and Information Science (문헌정보학에서의 인공지능과 전문가시스템 교육과정 연구)

  • Koo Bon-Young;Park Mi-Young
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.32 no.2
    • /
    • pp.211-232
    • /
    • 1998
  • It is the purpose of this study to specify contents of Library and Information Science to train information professional to meet environment change of technology and system. Among them. recognizing necessity of present Artificial Intelligence and Export System (AI and ES) required by changing environment of latest Information technology, it is also the purpose of this work to figure out fundamental data and the way of solution how to introduce what contents out of AI and ES to Library and Information Science. The briefed results are as follows. 1. Due to rapid change of high Information technology and computer application it is the most important essential points, In order of Importance, in finding available network source, In indexing on-line data base, in analysing and design information system. and in computer application ability. 2. In contents of AI and ES, most Important training portion for Library and Information Science are : data base treating, thesaurus, natural language processing. and knowledge representation. 3. Library and information science professors recognize It necessary for bigger number of Library and Information Science students to be educated artificial intelligence and expert system. 4. During forthcoming age it shows more important reorganization that artificial intelligence and expert system improves information professional in reference service, cataloging, classification, information retrieval, and documentation delivery 5. According to library and information science professors more important reorganization on the subject of AI and ES, the curricular on AI and ES is, forthcoming, to be Introduced to curricular on library and information science in the nation, In order of importance, (see 1. above).

  • PDF

The Empirical Analysis of Factors Affecting the Intention of College Students to Use Generative AI Services (대학생의 생성형 AI 서비스 이용의도에 영향을 미치는 요인에 대한 실증분석)

  • Chang, Soo-jin;Chung, Byoung-gyu
    • Journal of Venture Innovation
    • /
    • v.6 no.4
    • /
    • pp.153-170
    • /
    • 2023
  • Generative AI services, including ChatGPT, were becoming increasingly active. This study aimed to empirically analyze the factors that promoted and hindered the diffusion of such services from a consumer perspective. Accordingly, a research model was developed based on the Value-based Adoption Model (VAM) framework, addressing both benefit and sacrifice factors. Benefits identified included usefulness and enjoyment, while sacrifices were security and hallucination. The study analyzed how these factors affected the intention to use generative AI services. A survey was conducted among college students for empirical analysis, and 200 valid responses were analyzed. The analysis utilized structural equation modeling with AMOS 24. The empirical results showed that usefulness and enjoyment had a significant positive impact on perceived value, while security and hallucination had a significant negative impact. The order of influence on perceived value was usefulness, hallucination, security, and then enjoyment. Perceived value had a significant positive impact on usage intention. Moreover, perceived value was found to mediate the relationship between usefulness, enjoyment, security, hallucination, and the intention to use generative AI services. These findings expanded the research horizon academically by validating the effectiveness of generative AI services based on existing models and demonstrated the continued importance of usefulness in a practical context.

Study on the Impact of XAI Explanation Levels on Cognitive Load and User Satisfaction : Focusing on Risk Levels in Financial AI Systems

  • No-Ah Han;Yoo-Jin Hwang;Zoon-Ky Lee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.9
    • /
    • pp.49-59
    • /
    • 2024
  • In this paper, we examine the impact of XAI explanations on user satisfaction and cognitive load according to the risk levels defined in the EU AI Act. XAI aims to make the internal processes of complex AI models understandable to humans and is widely used in both academia and industry. The importance and value of XAI are continuously rising; however, there has been little research determining the necessary level of explanation according to AI system risk levels. To address this gap, we designed an experiment with 120 participants, divided into 8 groups, each exposed to one of four levels of explainability(XAI) within low-risk and high-risk financial AI systems. A quantitative approach was used to measure cognitive load, user satisfaction, mental effort, and the clarity of the material design across the different AI system interfaces. The results indicate that the amount of information in explanations significantly affects cognitive load and user satisfaction, depending on the risk level. However, the impact of the level of explanation on user satisfaction was mediated by the material design, which determined how easily the information was understood. This research provides practical, regulatory, and academic contributions by offering guidelines for determining the necessary level of explanation based on AI system risk levels.

A Checklist to Improve the Fairness in AI Financial Service: Focused on the AI-based Credit Scoring Service (인공지능 기반 금융서비스의 공정성 확보를 위한 체크리스트 제안: 인공지능 기반 개인신용평가를 중심으로)

  • Kim, HaYeong;Heo, JeongYun;Kwon, Hochang
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.3
    • /
    • pp.259-278
    • /
    • 2022
  • With the spread of Artificial Intelligence (AI), various AI-based services are expanding in the financial sector such as service recommendation, automated customer response, fraud detection system(FDS), credit scoring services, etc. At the same time, problems related to reliability and unexpected social controversy are also occurring due to the nature of data-based machine learning. The need Based on this background, this study aimed to contribute to improving trust in AI-based financial services by proposing a checklist to secure fairness in AI-based credit scoring services which directly affects consumers' financial life. Among the key elements of trustworthy AI like transparency, safety, accountability, and fairness, fairness was selected as the subject of the study so that everyone could enjoy the benefits of automated algorithms from the perspective of inclusive finance without social discrimination. We divided the entire fairness related operation process into three areas like data, algorithms, and user areas through literature research. For each area, we constructed four detailed considerations for evaluation resulting in 12 checklists. The relative importance and priority of the categories were evaluated through the analytic hierarchy process (AHP). We use three different groups: financial field workers, artificial intelligence field workers, and general users which represent entire financial stakeholders. According to the importance of each stakeholder, three groups were classified and analyzed, and from a practical perspective, specific checks such as feasibility verification for using learning data and non-financial information and monitoring new inflow data were identified. Moreover, financial consumers in general were found to be highly considerate of the accuracy of result analysis and bias checks. We expect this result could contribute to the design and operation of fair AI-based financial services.

A Study of the Definition and Components of Data Literacy for K-12 AI Education (초·중등 AI 교육을 위한 데이터 리터러시 정의 및 구성 요소 연구)

  • Kim, Seulki;Kim, Taeyoung
    • Journal of The Korean Association of Information Education
    • /
    • v.25 no.5
    • /
    • pp.691-704
    • /
    • 2021
  • The development of AI technology has brought about a big change in our lives. The importance of AI and data education is also growing as AI's influence from life to society to the economy grows. In response, the OECD Education Research Report and various domestic information and curriculum studies deal with data literacy and present it as an essential competency. However, the definition of data literacy and the content and scope of the components vary among researchers. Thus, we analyze the semantic similarity of words through Word2Vec deep learning natural language processing methods along with the definitions of key data literacy studies and analysis of word frequency utilized in components, to present objective and comprehensive definition and components. It was revised and supplemented by expert review, and we defined data literacy as the 'basic ability of knowledge construction and communication to collect, analyze, and use data and process it as information for problem solving'. Furthermore we propose the components of each category of knowledge, skills, values and attitudes. We hope that the definition and components of data literacy derived from this study will serve as a good foundation for the systematization and education research of AI education related to students' future competency.