• 제목/요약/키워드: AI Importance

검색결과 320건 처리시간 0.025초

AI 비서 서비스의 중요도와 만족도 분석 연구 (Importance and Satisfaction Analysis for AI Assistant Services)

  • 선영지;이중정;윤혜정
    • 한국IT서비스학회지
    • /
    • 제20권4호
    • /
    • pp.81-93
    • /
    • 2021
  • In the era of artificial intelligence, the use of 'artificial intelligence-based services' has been diversified by combining various smart devices, big data, and voice recognition technology with artificial intelligence. From the perspective of IT services, these services are important technology that cause a paradigm shift from display-centered to voice-centered, and from passive to active IT-based services. This study seeks to find a solution to the current situation where AI assistant service is still in its beginning stage, despite having been ten years since its release and having a growing number of consumer touch points. Accordingly, we categorized the functions of AI assistant services and identified the degree of importance and satisfaction of services recognized by actual users. In order to define the 'ideal' services of AI assistant, seven experts from AI assistant-related industry have participated in the interview. Based on this result, we investigated the importance and satisfaction of services perceived by actual users of AI assistant services. As a result of IPA (Importance Performance Analysis). we find out which services are potentially 'keep', 'concentrate', 'low priority', or 'overkill' and provide various implications from the findings.

중소 제조기업의 경쟁력 강화를 위한 제조AI 핵심 정책과제 도출에 관한 연구 (Discovering Essential AI-based Manufacturing Policy Issues for Competitive Reinforcement of Small and Medium Manufacturing Enterprises)

  • 김일중;김우순;김준영;채희수;우지영;도경민;임성훈;신민수;이지은;김흥남
    • 품질경영학회지
    • /
    • 제50권4호
    • /
    • pp.647-664
    • /
    • 2022
  • Purpose: The purpose of this study is to derive major policies that domestic small and medium-sized manufacturing companies should consider to maximize productivity and quality improvement by utilizing manufacturing data and AI, and to find priorities and implications. Methods: In this study, domestic and international issues and literature review by country were conducted to derive major considerations such as manufacturing AI technology, manufacturing AI talent, manufacturing AI data and manufacturing AI ecosystem. Additionally, the questionnaire survey targeting 46 experts of manufacturing data and AI industry were conducted. Finally, the major considerations and detailed factors importance were derived by applying the Analytic Hierarchy Process (AHP). Results: As a result of the study, it was found that 'manufacturing AI technology', 'manufacturing AI talent', 'manufacturing AI data', and 'manufacturing AI ecosystem' exist as key considerations for domestic manufacturing AI. After empirical analysis, the importance of the four key considerations was found to be 'manufacturing AI ecosystem (0.272)', 'manufacturing AI data (0.265)', 'manufacturing AI technology (0.233)', and 'manufacturing AI talent (0.230)'. The importance of the derived four viewpoints is maintained at a similar level. In addition, looking at the detailed variables with the highest importance for each of the four perspectives, 'Best Practice', 'manufacturing data quality management regime, 'manufacturing data collection infrastructure', and 'manufacturing AI manpower level of solution providers' were found. Conclusion: For the sustainable growth of the domestic manufacturing AI ecosystem, it should be possible to develop and promote manufacturing AI policies in a balanced way by considering all four derived viewpoints. This paper is expected to be used as an effective guideline when developing policies for upgrading manufacturing through domestic manufacturing data and AI in the future.

AI 솔루션 기업 관점의 AI 바우처 지원사업 개선방안 연구 (A Study on the Improvement Plan of AI Voucher Support Project based on the Perception of AI Solution Companies)

  • 조지연;송인국
    • 한국인터넷방송통신학회논문지
    • /
    • 제22권4호
    • /
    • pp.149-156
    • /
    • 2022
  • 최근의 팬데믹 상황에서 인공지능의 중요성은 더욱 부각되고 있으며, 주요국은 AI 기술주도권 확보를 위하여 노력 중이다. 한국 정부도 AI경쟁력 확보를 위한 사업을 추진하며 정부투자를 지속적으로 확대하고 있다. 산업 육성을 위한 정부사업의 효율적인 운영이 중요함에도 불구하고 이와 관련한 연구는 미미한 실정이다. 이에 본 연구는 AI 분야의 대표적인 정부 사업인 AI 바우처 지원사업의 개선방안을 분석하고 제안한다. 지원사업 참여기업을 대상으로 인터뷰를 수행하였으며, 내용 분석을 통하여 사업 추진과정의 이슈를 파악하고, 개선방안을 사업 준비, 진행, 종료 및 사후관리의 단계별로 제시하였다. 본 연구는 AI의 중요성이 증가하는 시점에 성공적인 AI산업 육성을 위한 정부 지원사업의 개선방안을 제시하는데 의의를 둔다.

예비교사의 AI·디지털 교육 요구분석 (Needs Assessment of Preservice Teachers' AI & Digital Education)

  • 권혁일
    • 문화기술의 융합
    • /
    • 제10권6호
    • /
    • pp.451-460
    • /
    • 2024
  • 본 연구는 초등교원양성대학인 'C 교육대학'의 'AI·디지털 교육' 교과목 개발을 위하여 재학생들의 AI·디지털 교육에 대한 요구를 분석하기 위한 목적으로 수행되었다. 연구목적을 달성하기 위하여 'C 교육대학' 4학년 재학생 79명을 대상으로 18개의 AI·디지털 교육 역량에 대한 중요도-수행도 차이 분석(IPA)을 실시하였다. 대응표본 t-test검증을 통해 18개 역량 모두 중요도와 실행도 점수 차이가 유의미한 것으로 나타났다. Borich 요구 분석 모델을 적용한 요구도 순위를 분석 결과 '데이터 활용 피드백 역량'의 요구도가 가장 높은 것으로 나타났다. 또한 'The Locus for Focus 모형'을 적용하여 요구도의 우선순위를 분석한 결과 '데이터 활용 피드백 역량,' 'AI·디지털 관련 기초지식이해 역량,' 'AI·디지털 기반 실제적 학습 설계 역량,' 등을 포함하여 우선순위가 매우 높은 9개의 역량을 규명하였다. 본 연구에서 규명된 요구분석 결과는 'AI·디지털 교육' 교과목 개발을 위한 기초 자료로 적극 반영될 필요가 있다.

A Comprehensive Review of AI Security: Threats, Challenges, and Mitigation Strategies

  • Serdar Yazmyradov;Hoon Jae Lee
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제16권4호
    • /
    • pp.375-384
    • /
    • 2024
  • As Artificial Intelligence (AI) continues to permeate various sectors such as healthcare, finance, and transportation, the importance of securing AI systems against emerging threats has become increasingly critical. The proliferation of AI across these industries not only introduces opportunities for innovation but also exposes vulnerabilities that could be exploited by malicious actors. This comprehensive review delves into the current landscape of AI security, providing an in-depth analysis of the threats, challenges, and mitigation strategies associated with AI technologies. The paper discusses key threats such as adversarial attacks, data poisoning, and model inversion, all of which can severely compromise the integrity, confidentiality, and availability of AI systems. Additionally, the paper explores the challenges posed by the inherent complexity and opacity of AI models, particularly deep learning networks. The review also evaluates various mitigation strategies, including adversarial training, differential privacy, and federated learning, that have been developed to safeguard AI systems. By synthesizing recent advancements and identifying gaps in existing research, this paper aims to guide future efforts in enhancing the security of AI applications, ultimately ensuring their safe and ethical deployment in both critical and everyday environments.

The Necessity of Education in Response to Technological Advancements and Future Environmental Changes: A Comparison of Korean Medicine Doctors and Students

  • Yu Seong Park;Kyeong Heon Lee;Hye In Jeong;Kyeong Han Kim
    • 대한한의학회지
    • /
    • 제44권4호
    • /
    • pp.72-86
    • /
    • 2023
  • Objectives: The medical field is rapidly evolving with AI and digital technologies like AI-based X-ray analysis and digital therapeutics gaining approval. Telemedicine is becoming prominent, and medical schools are adapting by integrating AI education. Pusan National University leads a talent training project for AI in health. Korean Medicine is incorporating AI with diagnostic systems and chatbots. However, there's a lack of research on education awareness in Korean Medicine Colleges. The study aims to assess opinions on integrating AI, digital therapeutics, and DNA test into the Korean medicine college curriculum for improved education. Methods: We selected appropriate four specific areas: artificial intelligence in medicine, digital therapeutics, DNA test, and telemedicine. The questionnaire developed for this study underwent expert evaluation and was subsequently administered to registered KMDs of the Association of Korean Medicine, as well as students from 12 Korean Medicine universities. The survey was designed to analyze the awareness and perceived importance of the 4 areas. Results: Both KMDs and Korean medicine students exhibited comparable awareness levels across the four objectives. Notably, both groups identified a high educational necessity and importance of artificial intelligence in medicine for clinical settings. Statistically significant differences were observed between KMDs and students in their perspectives on the importance of telemedicine and DNA test in the Korean medicine field, the educational necessity of DNA test within Korean medicine universities, and the need for comprehension of regulations related to digital therapeutics. Conclusion: The survey of Korean medicine professionals and students underscores a strong understanding of key areas such as Telemedicine, medical AI, DNA test, and digital therapeutics. Medical AI is identified as crucial for future education. There's a consensus on the need for curriculum changes in Korean medicine schools, particularly in adapting to evolving healthcare trends. The focus should be on practical clinical application, with a call for additional research to better integrate student and practitioner perspectives in future curriculum reform discussions.

텍스트 마이닝을 이용한 초·중등 교사의 SW·AI 교육에 대한 인식 연구 (A Study on the Perceptions of SW·AI Education for Elementary and Secondary School Teachers Using Text Mining)

  • 정미현;한옥영;김갑수;신승기;김재현
    • 인터넷정보학회논문지
    • /
    • 제24권6호
    • /
    • pp.57-64
    • /
    • 2023
  • 본 연구에서는 초·중등 학생들의 기본소양을 갖추기 위한 SW·AI 교육의 중요성과 담당 교과에서 SW·AI 융합 또는 활용 교육의 필요성에 대한 초·중등 교사들의 인식을 분석하기 위하여 판단표집 표본추출 방법으로 전국의 초·중등 교사 830명을 연구대상으로 선정하여 설문 자료를 수집, 분석하였다. 분석 결과, 초·중등 교사 모두 SW·AI 교육의 중요성과 필요성을 학교 특성, 지역, 교육 경력, SW·AI 교육 운영 경험 여부와 상관없이 매우 높게 인식하고 있었다. 그럼에도 불구하고 SW·AI 교육을 운영하지 못하는 사유로는 업무부담과 본인의 교육 역량 부족이 높게 나타났다. SW·AI 교육 운영을 위한 필요 여건에 대한 의견을 분석한 결과에서도 업무량 경감과 예산 지원, 교사 역량 강화를 위한 교사연수, 콘텐츠 보급, 교과 연계 수업 확대, 시수 확보 등이 중요한 영향 요인으로 제시되어 다각적 수업 지원과 교사 역량 강화 프로그램에 대한 높은 수요를 확인할 수 있었다.

A Conceptual Architecture for Ethic-Friendly AI

  • Oktian, Yustus-Eko;Brian, Stanley;Lee, Sang-Gon
    • 한국컴퓨터정보학회논문지
    • /
    • 제27권4호
    • /
    • pp.9-17
    • /
    • 2022
  • 최첨단 AI 시스템은 방대한 데이터 수집에서 알고리즘 편향에 이르기까지 많은 윤리적 문제를 드러내고 있다. 이에 본 논문에서는 연합학습과 블록체인을 결합하여, 더 윤리적인 AI 아키텍처를 제안하였다. AI의 윤리성에 관한 중요한 문제들을 논의하고, 문헌조사를 통하여 윤리적 AI 시스템에 대한 요구사항을 연구하고 도출한다. 제안한 아키텍처의 요구사항 만족을 분석하였다. 제안한 AI 구조를 디자인에 채택함으로써 AI 서비스를 보다 윤리적으로 수행할 수 있다.

예비교사 대상 비대면 SW·AI 교육 효과 분석 (Analysis of the effects of non-face-to-face SW·AI education for Pre-service teachers)

  • 박선주
    • 한국정보교육학회:학술대회논문집
    • /
    • 한국정보교육학회 2021년도 학술논문집
    • /
    • pp.315-320
    • /
    • 2021
  • 미래사회 변화에 대비하기 위하여 SW·AI 교육은 필수적이다. 본 논문에서는 예비교사를 대상으로 비대면 SW·AI 교육을 실시한 후 SW 기초교육 효과성 측정도구를 사용하여 교육 전과 후의 SW 교육 효과성을 측정하였다. 분석 결과, 전체 평균과 '컴퓨팅 사고력', 'SW 문해력' 영역의 평균이 유의미하게 증가하였고, '컴퓨팅 사고력' 영역의 분해, 패턴인식, 추상화, 알고리즘 하위영역에서도 모두 교육 전과 후의 평균의 차이가 통계적으로 유의미하게 나타났다. 학생들은 SW·AI 교육을 통해 SW 교육의 필요성과 컴퓨팅 사고력의 중요성을 인식할 뿐만 아니라 정보를 분해하고 패턴을 인식하고 추출하며 문제해결과정을 표현하는 과정을 이해함을 알 수 있었다. 이는 비대면 SW·AI 교육도 SW가 중요함을 인식시키는 것을 넘어 컴퓨팅 사고력, SW 문해력을 향상시키는 효과를 나타내고 있음을 알 수 있다.

  • PDF

Experience Way of Artificial Intelligence PLAY Educational Model for Elementary School Students

  • Lee, Kibbm;Moon, Seok-Jae
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제12권4호
    • /
    • pp.232-237
    • /
    • 2020
  • Given the recent pace of development and expansion of Artificial Intelligence (AI) technology, the influence and ripple effects of AI technology on the whole of our lives will be very large and spread rapidly. The National Artificial Intelligence R&D Strategy, published in 2019, emphasizes the importance of artificial intelligence education for K-12 students. It also mentions STEM education, AI convergence curriculum, and budget for supporting the development of teaching materials and tools. However, it is necessary to create a new type of curriculum at a time when artificial intelligence curriculum has never existed before. With many attempts and discussions going very fast in all countries on almost the same starting line. Also, there is no suitable professor for K-12 students, and it is difficult to make K-12 students understand the concept of AI. In particular, it is difficult to teach elementary school students through professional programming in AI education. It is also difficult to learn tools that can teach AI concepts. In this paper, we propose an educational model for elementary school students to improve their understanding of AI through play or experience. This an experiential education model that combineds exploratory learning and discovery learning using multi-intelligence and the PLAY teaching-learning model to undertand the importance of data training or data required for AI education. This educational model is designed to learn how a computer that knows only binary numbers through UA recognizes images. Through code.org, students were trained to learn AI robots and configured to understand data bias like play. In addition, by learning images directly on a computer through TeachableMachine, a tool capable of supervised learning, to understand the concept of dataset, learning process, and accuracy, and proposed the process of AI inference.