• Title/Summary/Keyword: AI Assistants

Search Result 19, Processing Time 0.02 seconds

Study on the Perception of Workers and Supervisors about AI Assistants (AI 비서에 대한 직무 종사자와 관리자의 인식 유형 연구)

  • Lee, Seon Mi;Yun, Haejung
    • Knowledge Management Research
    • /
    • v.19 no.2
    • /
    • pp.187-203
    • /
    • 2018
  • The purpose of this study was to investigate the perception about AI assistants and the differences between two groups, workers(secretaries) and supervisors(bosses), using the Q-methodology which has an advantage in understanding the types of subjective perceptions. Through literature reviews and interviews, 34 Q-samples were extracted, and then Q-sorting was conducted by P-samples(20 workers and 15 supervisors). As a result of Q-sorting, the types and characteristics of AI assistants perceived by each P-sample were explained. The perception of the workers divided into five distinct types, and the perception of the supervisors was divided into three distinct types. The most crucial factors in distinguishing between workers and supervisors' perceptions depend on whether they are capable of performing certain tasks and whether they can replace existing secretarial jobs. This study, as the primary research on AI assistants, can help to redefine the work that can be replaced by AI and the work that only people can do, and thus to establish education, recruitment, and training plans.

The Structural Relationships of between AI-based Voice Recognition Service Characteristics, Interactivity and Intention to Use (AI기반 음성인식 서비스 특성과 상호 작용성 및 이용 의도 간의 구조적 관계)

  • Lee, SeoYoung
    • Journal of Information Technology Services
    • /
    • v.20 no.5
    • /
    • pp.189-207
    • /
    • 2021
  • Voice interaction combined with artificial intelligence is poised to revolutionize human-computer interactions with the advent of virtual assistants. This paper is analyzing interactive elements of AI-based voice recognition services such as sympathy, assurance, intimacy, and trust on intention to use. The questionnaire was carried out for 284 smartphone/smart TV users in Korea. The collected data was analyzed by structural equation model analysis and bootstrapping. The key results are as follows. First, AI-based voice recognition service characteristics such as sympathy, assurance, intimacy, and trust have positive effects on interactivity with the AI-based voice recognition service. Second, the interactivity with the AI-based voice recognition service has positive effects on intention to use. Third, AI-based voice recognition service characteristics such as interactional enjoyment and intimacy have directly positive effects on intention to use. Fourth, AI-based voice recognition service characteristics such as sympathy, assurance, intimacy and trust have indirectly positive effects on intention to use the AI-based voice recognition service by mediating the effect of the interactivity with the AI-based voice recognition service. It is meaningful to investigate factors affecting the interactivity and intention to use voice recognition assistants. It has practical and academic implications.

"Hey Alexa, Would You Create a Color Palette?" UX/UI Designers' Perspectives on Using Natural Language to Interact with Future Intelligent Design Assistants ("알렉사, 색상 팔레트를 만들어줄 수 있어?" 지능형 디자인 비서와 자연어로 협업을 수행할 UX/UI 디자이너의 생각)

  • Bertao, Renato Antonio;Joo, Jaewoo
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.11
    • /
    • pp.193-206
    • /
    • 2021
  • Artificial Intelligence (AI) has been inserted into people's lives through Intelligent Virtual Assistants (IVA), like Alexa. Moreover, intelligent systems have expanded to design studios. This research delves into designers' perspectives on developing AI-based practices and examines the challenges of adopting future intelligent design assistants. We surveyed UX/UI professionals in Brazil to understand how they use IVAs and AI design tools. We also explored a scenario featuring the use of Alexa Sensei, a hypothetical voice-controlled AI-based design assistant mixing Alexa and Adobe Sensei characteristics. The findings indicate respondents have had limited opportunities to work with AI, but they expect intelligent systems to improve the efficiency of the design process. Further, majority of the respondents predicted that they would be able to collaborate creatively with AI design systems. Although designers anticipated challenges in natural language interaction, those who already adopted IVAs were less resistant to the idea of working with Alexa Sensei as an AI design assistant.

The effect of AI shopping assistant's motivated consumer innovativeness on satisfaction and purchase intention (AI 쇼핑 도우미 사용자의 소비자 혁신 동기가 만족도와 구매의도에 미치는 영향)

  • Hye Jung Kim ;Young-Ju Rhee
    • The Research Journal of the Costume Culture
    • /
    • v.31 no.5
    • /
    • pp.651-668
    • /
    • 2023
  • This study aims to help companies with efficient investment and marketing strategies by empirically verifying the impact on satisfaction and purchase intention for artificial intelligence-based digital technology supported shopping assistants introduced in e-commerce. Frequency, factor, SEM, and multiple group analysises were conducted using SPSS 26.0 and Amos 26.0. As a result, first, motivated consumer innovativeness elements of AI shopping assistant were derived into a total of four categories: functional, hedonic, rational, and reliable. Second, in the order of hedonic and rational, satisfaction with the AI shopping assistant was significantly affected, and in the order of rational and functional, purchase intention was significantly affected. The satisfaction with the AI shopping assistant did not affect the purchase intention. Third, in the case of hedonic, the AI-preferred group had a more significant effect on satisfaction than the human-preferred group, and in the case of rational, there was no difference by group in purchase intention. Thus, it was found that consumers prefer AI shopping helpers for e-commerce because they can shop reasonably and are functionally convenient. Therefore, when introducing AI shopping assistants, it is essential to include content that can compare and analyze fundamental information, such as product prices, as well as search functions and payment system compatibility that facilitate shopping.

AI Advisor for Response of Disaster Safety in Risk Society (위험사회 재난 안전 분야 대응을 위한 AI 조력자)

  • Lee, Yong-Hak;Kang, Yunhee;Lee, Min-Ho;Park, Seong-Ho;Kang, Myung-Ju
    • Journal of Platform Technology
    • /
    • v.8 no.3
    • /
    • pp.22-29
    • /
    • 2020
  • The 4th industrial revolution is progressing by country as a mega trend that leads various technological convergence directions in the social and economic fields from the initial simple manufacturing innovation. The epidemic of infectious diseases such as COVID-19 is shifting digital-centered non-face-to-face business from economic operation, and the use of AI and big data technology for personalized services is essential to spread online. In this paper, we analyze cases focusing on the application of artificial intelligence technology, which is a key technology for the effective implementation of the digital new deal promoted by the government, as well as the major technological characteristics of the 4th industrial revolution and describe the use cases in the field of disaster response. As a disaster response use case, AI assistants suggest appropriate countermeasures according to the status of the reporter in an emergency call. To this end, AI assistants provide speech recognition data-based analysis and disaster classification of converted text for adaptive response.

  • PDF

Greeting, Function, and Music: How Users Chat with Voice Assistants

  • Wang, Ji;Zhang, Han;Zhang, Cen;Xiao, Junjun;Lee, Seung Hee
    • Science of Emotion and Sensibility
    • /
    • v.23 no.2
    • /
    • pp.61-74
    • /
    • 2020
  • Voice user interface has become a commercially viable and extensive interaction mechanism with the development of voice assistants. Despite the popularity of voice assistants, the academic community does not utterly understand about what, when, and how users chat with them. Chatting with a voice assistant is crucial as it defines how a user will seek the help of the assistant in the future. This study aims to cover the essence and construct of conversational AI, to develop a classification method to deal with user utterances, and, most importantly, to understand about what, when, and how Chinese users chat with voice assistants. We collected user utterances from the real conventional database of a commercial voice assistant, NetEase Sing in China. We also identified different utterance categories on the basis of previous studies and real usage conditions and annotated the utterances with 17 labels. Furthermore, we found that the three top reasons for the usage of voice assistants in China are the following: (1) greeting, (2) function, and (3) music. Chinese users like to interact with voice assistants at night from 7 PM to 10 PM, and they are polite toward the assistants. The whole percentage of negative feedback utterances is less than 6%, which is considerably low. These findings appear to be useful in voice interaction designs for intelligent hardware.

Evaluating Conversational AI Systems for Responsible Integration in Education: A Comprehensive Framework

  • Utkarch Mittal;Namjae Cho;Giseob Yu
    • Journal of Information Technology Applications and Management
    • /
    • v.31 no.3
    • /
    • pp.149-163
    • /
    • 2024
  • As conversational AI systems such as ChatGPT have become more advanced, researchers are exploring ways to use them in education. However, we need effective ways to evaluate these systems before allowing them to help teach students. This study proposes a detailed framework for testing conversational AI across three important criteria as follow. First, specialized benchmarks that measure skills include giving clear explanations, adapting to context during long dialogues, and maintaining a consistent teaching personality. Second, adaptive standards check whether the systems meet the ethical requirements of privacy, fairness, and transparency. These standards are regularly updated to match societal expectations. Lastly, evaluations were conducted from three perspectives: technical accuracy on test datasets, performance during simulations with groups of virtual students, and feedback from real students and teachers using the system. This framework provides a robust methodology for identifying strengths and weaknesses of conversational AI before its deployment in schools. It emphasizes assessments tailored to the critical qualities of dialogic intelligence, user-centric metrics capturing real-world impact, and ethical alignment through participatory design. Responsible innovation by AI assistants requires evidence that they can enhance accessible, engaging, and personalized education without disrupting teaching effectiveness or student agency.

Categorization of Interaction Factors through Analysis of AI Agent Using Scenarios (인공지능 에이전트의 사용 시나리오 분석을 통한 인터랙션 속성 유형화)

  • Cheon, Soo-Gyeong;Yeoun, Myeong-Heum
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.11
    • /
    • pp.63-74
    • /
    • 2020
  • AI products are used 'AI assistants' as embedded in smart phones, speakers, appliances as agents. Studies on anthropomorphism, such as personality, voice with a weak AI are being conducted. Role and function of AI agents will expand from development of AI technology. Various attributes related to the agent, such as user type, usage environment, appearance of the agent will need to be considered. This study intends to categorize interaction factors related to agents from the user's perspective through analysis of concept videos which agents with strong AI. Framework for analysis was built on the basis of theoretical considerations for agents. Concept videos were collected from YouTube. They are analyzed according to perspectives on environment, user, agent. It was categorized into 8 attributes: viewpoint, space, shape, agent behavior, interlocking device, agent interface, usage status, and user interface. It can be used as reference when developing, predicting agents to be commercialized in the future.

Which Agent is More Captivating for Winning the Users' Hearts?: Focusing on Paralanguage Voice and Human-like Face Agent

  • SeoYoung Lee
    • Asia pacific journal of information systems
    • /
    • v.34 no.2
    • /
    • pp.585-619
    • /
    • 2024
  • This paper delves into the comparative analysis of human interactions with AI agents based on the presence or absence of a facial representation, combined with the presence or absence of paralanguage voice elements. The "CASA (Computer-Are-Social-Actors)" paradigm posits that people perceive computers as social actors, not tools, unconsciously applying human norms and behaviors to computers. Paralanguages are speech voice elements such as pitch, tone, stress, pause, duration, speed that help to convey what a speaker is trying to communicate. The focus is on understanding how these elements collectively contribute to the generation of flow, intimacy, trust, and interactional enjoyment within the user experience. Subsequently, this study uses PLS analysis to explore the connections among all variables within the research framework. This paper has academic and practical implications.

Evaluating AI Techniques for Blind Students Using Voice-Activated Personal Assistants

  • Almurayziq, Tariq S;Alshammari, Gharbi Khamis;Alshammari, Abdullah;Alsaffar, Mohammad;Aljaloud, Saud
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.1
    • /
    • pp.61-68
    • /
    • 2022
  • The present study was based on developing an AI based model to facilitate the academic registration needs of blind students. The model was developed to enable blind students to submit academic service requests and tasks with ease. The findings from previous studies formed the basis of the study where functionality gaps from the literary research identified by blind students were utilized when the system was devised. Primary simulation data were composed based on several thousand cases. As such, the current study develops a model based on archival insight. Given that the model is theoretical, it was partially applied to help determine how efficient the associated AI tools are and determine how effective they are in real-world settings by incorporating them into the portal that institutions currently use. In this paper, we argue that voice-activated personal assistant (VAPA), text mining, bag of words, and case-based reasoning (CBR) perform better together, compared with other classifiers for analyzing and classifying the text in academic request submission through the VAPA.