Minseo Kim;Minjae Kim;Minseong Cho;Jungsu Park;Jinsung Kim;Hong Min
Annual Conference of KIPS
/
2024.10a
/
pp.121-122
/
2024
컴퓨터 비전 기술은 이미지를 분석하여 객체를 인식하고 추적할 수 있으므로 객체를 감지하고 분석하는데 유용하다. 이러한 객체를 감지하고 분석하는 기술 덕분에 컴퓨터 비전 기술이 다양한 응용 분야에 적용되고 있으며 성능과 관련하여 다양한 연구가 활발하게 진행되고 있다. 기존의 연구는 대규모 학습 데이터 사용, 모델 복잡성 증가, 전이 학습을 통한 성능 향상 연구가 주를 이루었다. 본 논문에서는 학습 데이터에 실제 촬영된 이미지의 비율이 객체 인식 정확도에 미치는 영향을 분석하였다. 실험을 통해 학습 데이터 중 실제 촬영된 이미지가 포함되면 예측 정확도가 증가한다는 결과를 확인하였다.
Annual Conference on Human and Language Technology
/
2019.10a
/
pp.415-418
/
2019
기계독해 모델에 새로운 도메인을 적용하기 위해서는 도메인에 맞는 데이터가 필요하다. 그러나 추가 데이터 구축은 많은 비용이 발생한다. 사람이 직접 구축한 데이터 없이 적용하기 위해서는 자동 추가 데이터 확보, 도메인 적응의 문제를 해결해야한다. 추가 데이터 확보의 경우 번역, 질의 생성의 방법으로 연구가 진행되었다. 그러나 도메인 적응을 위해서는 새로운 정답 유형에 대한 질의가 필요하며 이를 위해서는 정답 후보 추출, 추출된 정답 후보로 질의를 생성해야한다. 본 논문에서는 이러한 문제를 해결하기 위해 듀얼 포인터 네트워크 기반 정답 후보 추출 모델로 정답 후보를 추출하고, 포인터 제너레이터 기반 질의 생성 모델로 새로운 데이터를 생성하는 방법을 제안한다. 실험 결과 추가 데이터 확보의 경우 KorQuAD, 경제, 금융 도메인의 데이터에서 모두 성능 향상을 보였으며, 도메인 적응 실험에서도 새로운 도메인의 문맥만을 이용해 데이터를 생성했을 때 기존 도메인과 다른 도메인에서 모두 기계독해 성능 향상을 보였다.
지속 가능한 에너지인 태양광 발전은 전 세계에서 널리 활용하는 재생 에너지 원천 중 하나로 최근 효율적인 태양광 발전 시스템 운영을 위해 태양광 발전량을 정확하게 예측하기 위한 연구가 활발히 진행되고 있다. 태양광 발전량 예측 모델을 구성하기 위해서는 기상 및 대기 환경을 넘어 태양의 위치에 따른 일사량의 정보가 필수적이나 태양의 실시간 위치 정보를 입력 변수로 활용한 연구가 부족한 실정이다. 그리하여 본 논문에서는 시간과 태양광 발전소 위치를 기반으로 태양의 고도와 방위각을 실시간으로 계산하여 입력 변수로 사용하는 방식을 제안한다. 이를 위해 AutoML 기반의 다양한 기계학습 모델을 구성하여 태양광 발전율을 예측하고 그 성능을 비교 분석하였다. 실험 결과, 태양 위치 정보를 포함한 경우에 환경 변수만을 고려하였을 때보다 예측 성능이 크게 향상되었음을 확인할 수 있었으며, Extra Trees 모델의 경우 태양 위치 정보를 추가하였을 때 MAE(Mean Absolute Error)가 33.90 에서 22.38 까지 낮아지는 결과를 확인하였다.
본 논문에서는 LLM(Large Language Model) 모델의 fine-tuning 을 통한, 기초 수리 서술형 문항 풀이용 모델 및 Dall-E2 등 이미지 생성형 모델을 활용한 따른 영어 퀴즈풀이용 이미지 생성형 모델을 생성하여, 한국어 기반 LLM 자체 모델 학습 및 교육용 이미지 생성에 대한 방법을 고찰하였다.
KIPS Transactions on Computer and Communication Systems
/
v.10
no.11
/
pp.305-310
/
2021
Artificial intelligence technology in the medical field initially focused on analysis and algorithm development, but it is gradually changing to web application development for service as a product. This paper describes a Urinary Stone segmentation model in abdominal CT images and an artificial intelligence web application based on it. To implement this, a model was developed using U-Net, a fully-convolutional network-based model of the end-to-end method proposed for the purpose of image segmentation in the medical imaging field. And for web service development, it was developed based on AWS cloud using a Python-based micro web framework called Flask. Finally, the result predicted by the urolithiasis segmentation model by model serving is shown as the result of performing the AI web application service. We expect that our proposed AI web application service will be utilized for screening test.
Journal of The Korean Association of Information Education
/
v.26
no.1
/
pp.65-73
/
2022
In this study, by using Entry text model learning, educational contents for artificial intelligence education of elementary school students are developed and applied to actual classes. Based on the elementary and secondary artificial intelligence content table, the achievement standards of practical software education and artificial intelligence education will be reconstructed.. Among text, images, and sounds capable of machine learning, "production of emotion recognition programs using text model learning" will be selected as the educational content, which can be easily understood while reducing data preparation time for elementary school students. Entry artificial intelligence is selected as an education platform to develop artificial intelligence education contents that create emotion recognition programs using text model learning and apply them to actual elementary school classes. Based on the contents of this study, As a result of class application, students showed positive responses and interest in the entry AI class. it is suggested that quantitative research on the effectiveness of classes for elementary school students is necessary as a follow-up study.
Journal of the Korea Society of Computer and Information
/
v.28
no.7
/
pp.47-55
/
2023
This paper presents a method for predicting the threat index of combat systems using Gradient Boosting Regressors and Support Vector Regressors among machine learning models. Currently, combat systems are software that emphasizes safety and reliability, so the application of AI technology that is not guaranteed to be reliable is restricted by policy, and as a result, the electrified domestic combat systems are not equipped with AI technology. However, in order to respond to the policy direction of the Ministry of National Defense, which aims to electrify AI, we conducted a study to secure the basic technology required for the application of machine learning in combat systems. After collecting the data required for threat index evaluation, the study determined the prediction accuracy of the trained model by processing and refining the data, selecting the machine learning model, and selecting the optimal hyper-parameters. As a result, the model score for the test data was over 99 points, confirming the applicability of machine learning models to combat systems.
본 연구에서는 TIMA를 전구체로 하는 수직형 MOCVD 반응기를 대상으로 수학적 모델을 세우고 컴퓨터에 의한 수치모사를 수행하여 반응기 설계 변수 및 공정조건이 AI의 증착속도와 증착두께 분포에 미치는 영향을 알아보았다. 수학적 모델은 수직형 반응기를 축대칭으로 보아 2차원으로 수립하였으며 반응기내의 운동량전달, 열전달, 물질전달을 포함한다. 이 수학적 모델의 지배 방정식들에 대하여 Galerkin 유한요소법을 적용하여 수치적으로 반응기 내의 유체 흐름 구조, 온도분포와 반응물의 농도 분포를 구하였다. 수치모사 결과 AI의 증착속도는 반응기 압력이 0.47torr, 기판온도가 25$0^{\circ}C$, 유량이 7.5sccm일 경우, 190-230$\AA$/min로 나타났다.
개체명이란, 문서에서 특정한 의미를 가지고 있는 단어나 어구를 뜻하는 말로 사람, 기관명, 지역명, 날짜, 시간 등이 있으며 이 개체명을 찾아서 해당하는 의미의 범주를 결정하는 것을 개체명 인식이라고 한다. 본 논문에서는 BERT(Bidirectional Encoder Representations from Transformers) 활용한 한국어 개체명 인식기를 제안한다. 제안하는 모델은 기 학습된 BERT 모델을 활용함으로써 성능을 극대화하여, 최종 F1-Score 는 90.62 를 달성하였고, Bi-LSTM-Attention-CRF 모델에 비해 매우 뛰어난 결과를 보였다.
본 논문은 멀티 프로세스 컨트롤&모니터링 모델을 지원하는 AI-Maker 시스템에 대해서 기술한다. 멀티 프로세스 컨트롤&모니터링 모델은 제어 구조의 표준으로 떠오르고 있는 OPC와 마이크로소프트사의 분산형 보안 서비스 개념(하부 구조 서비스, 응용 프로그램 지원 서비스)들을 사용하여 실제, 가공, 그리고 가상 데이터 액세스 포인터들에 대해서 차별화 된 제어 구조를 제시한다. AI-Maker는 다양한 사용자들에 대한 차별화 된 서비스와 가공 또는 가상 액세스 포인터를 사용하기 때문에 장비 종속적인 시스템에 대한 개발비용을 감소시킬 수 있다. 또한 전문가 시스템의 학습에 필요한 표본 데이터를 제공하므로 필드버스 기반의 자동화 시스템 개발 및 유지보수 시 양질의 서비스를 제공할 수 있는 이점이 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.