컴퓨터 비전 연구에서 2차원 인체 자세는 매우 광범위한 연구 방향으로 특히 자세 추적과 행동 인식에서 유의미한 분야다. 인체 자세 표적 획득은 이미지에서 인체 목표를 정확히 찾는 방법을 연구하는 것이 핵심이며 인체 자세 인식은 인공지능(AI)에 적용하는 한편 일상생활에 활용되고 있어서 매우 중요한 연구의의가 있다. 인체 자세 인식 효과의 우수성의 기준은 인식 과정의 성공률과 정확도에 의해 결정된다. 본 연구의 인체 자세 인식에서는 딥러닝 전용 데이터셋인 MS COCO를 기반하여 인체를 17개의 키 포인트로 구분하였다. 다음으로 주요 특징에 대한 세분화 마스크(segmentation mask) 방법을 사용하여 인식률을 개선하였다. 최종적으로 신경망 모델을 설계하고 간단한 단계별 학습부터 효율적인 학습에 이르기까지 많은 수의 표본을 학습시키는 알고리즘을 제안하여 정확도를 향상할 수 있었다.
본 논문은 문서의 보안과 손실 및 오염에 대하여 복원능력을 향상시키는 방안을 제안한다. 이를 위해서 암호화로 DnCNN(DeNoise Convolution Neural Network)을 제시한다. 암호화 방법을 구현하기 위하여 2D이미지정보를 광학에 사용되는 공간주파수 전달함수(Spatial Frequency Transfer Function)의 수학적 모델을 적용한다. 공간 주파수 전달함수를 사용하여 광학적 간섭 패턴을 암호화로 사용하고 공간 주파수 전달함수의 수학적 변수를 복호화하는 암호로 사용하는 방법을 제안하였다. 또한, 딥러닝을 적용한 DnCNN 방법을 적용하여 노이즈 제거하여 복원 성능을 개선한다. 실험결과, 65%의 정보 손실이 있는 경우에도 Pre-Training DnCNN Deep Learning을 적용한 결과 공간 주파수 전달함수만을 활용한 복원 결과 와 비교하여 PSNR(Peak Signal-to-noise ratio)을 11% 이상 우수한 성능을 확인할 수 있다. 또한, CC(Correlation Coefficient)의 특성도 16% 이상 우수한 결과를 보이고 있다.
바둑은 2,500년 이상의 역사를 지녔고, 바둑에서의 사활문제는 컴퓨터 바둑을 구축 시에 반드시 해결해야 되는 기본 문제영역이 된다. 본 논문에서는 사활문제와 직결되는 3, 4, 5, 6궁에 대한 원형 안형의 개수 확인과 4-튜플 형식으로 표현된 원형 안형을 분류하고자 했다. 실험은 몬테카를로 방법과 점 패턴 매칭에 의해 수행되었다. 실험 결과에 따르면 원형 안형의 개수는 3궁 2개, 4궁 5개, 5궁 12개, 6궁 35개가 된다. 아울러 4-튜플 형식으로 된 원형 안형을 분류하면 3궁 1가지, 4궁 3가지, 5궁 4가지, 6궁 8가지로 분류된다.
현재 개발중인 그리고 운행중인 대부분의 자동차에는 다양한 IoT 센서들이 탑재되어 있지만, 자동차 사고를 일으키는 요인 중 몇몇 요인들은 상대적으로 탐지하기 힘들다. 이러한 요소 중 대표적인 위험 요인 중 하나가 블랙 아이스이다. 블랙 아이스는 블랙 아이스가 깔린 부분을 지나가는 모든 차량에 영향을 줄 수 있어 대형 사고를 유발할 가능성이 가장 높은 요인 중 하나이다. 따라서 대형 사고를 막기 위해 블랙 아이스 검출기법은 꼭 필요하다. 이를 위해 몇몇 연구가 과거 진행되었으나 몇몇 부분에서 현실적이지 않는 요소들이 반영된 경우가 있어, 이를 보충하기 위한 연구가 필요하다. 본 논문에서는 CNN 기법으로 컬러 이미지를 분석하여 블랙 아이스를 탐지하고자 하였으며, 일정 수준의 블랙 아이스 탐지에 성공하였다. 다만 기존 연구 와 차이가 있어 그 이유를 분석하였다.
디지털 대전환 시대를 본격적으로 맞이하게 되면서 SW, AI, 빅데이터 등을 바탕으로 한 융합적인 사고력의 중요성이 높아져 가고 있다. 이러한 사회적 요구에 발맞추어 본 연구에서는 생명과학 분야의 멘델의 유전 원리를 몬테카를로 시뮬레이션 기법을 활용한 5차시 분량의 SW융합교육 프로그램을 개발하였다. 스크래치를 활용한 몬테카를로 시뮬레이션 기법으로 멘델의 유전 원리를 프로그래밍하여 구현해 봄으로써 융합적인 사고력 뿐만 아니라 관련 지식을 심화적으로 이해할 수 있도록 프로그램을 구성하였다. 개발한 교육 프로그램의 타당성을 검증 받기 위해 관련 영역의 전문가 11인을 대상으로 타당도 검정을 의뢰하였으며, Lawshe가 제시한 CVR 기준값인 0.59를 충족하여 타당성을 검증받았다.
4차 산업 혁명 시대의 소프트웨어는 지능정보사회에서 핵심기반이 되고 있다. 이에 시대에 대응할 수 있는 인력양성과 교육의 새로운 방향에 대한 연구가 필요하다. 이를 위해 교육부는 교육과정을 개편하고 일반 ICT 지식의 습득보다 컴퓨팅 사고력 기반의 논리적인 문제해결 과정을 기반으로 한 소프트웨어 교육을 시행하고 있다. 하지만 소프트웨어 교육을 위한 양질의 교육 콘텐츠 확보가 부족하고 첨단 IT 기술과 연계하여 교육할 수 있는 교구 또한 미비한 상황이다. 이를 개선하기 위해 본 논문은 소프트웨어 교육용 코딩 로봇을 활용하여 인공지능 등의 융합형 소프트웨어 교육이 가능한 교육 콘텐츠 및 기능확장을 위한 외부 확장장치 개발을 제안한다. 이를 통해 기존의 단순 문제해결 방식의 교육과정을 개선하고 다양한 학습 자료를 개발하여 효과적인 소프트웨어 교육이 가능하다.
5G 시대를 맞아, 인공지능, 클라우드 컴퓨팅, 자율주행 차량, 스마트 제조 등의 기술 소요가 증가하고 있다. 전자기기의 고효율을 위해 고집적회로 및 패키징 연구는 중요하다. 전해도금된 솔더는 범프 조성의 균일성에 한계가 있다. 작은 크기의 솔더 파우더로 구성된 솔더 페이스트는 고집적 패키징에 일반적으로 사용되는 솔더 중 하나이다. 솔더 페이스트에 나노 입자를 첨가하거나 기판 표면 마감 처리를 하여 젖음성을 향상시키고, 금속 패드 계면에서 금속간화합물의 성장을 억제하는 연구가 진행중이다. 본 논문은 나노 입자 첨가를 통한 솔더 페이스트의 젖음성 향상과 계면 금속간화합물의 성장을 억제하는 원리에 대하여 설명한다.
인공지능 기법들은 특히 영상분류(image classification), 객체탐지(object detection), 영상분할(image segmentation)에 효과적으로 사용되고 있다. 특히, 딥러닝(deep learning)은 최근 컴퓨팅 파워의 증대와 함께 깊고 두터운 네트워크 구성이 가능해지고 보다 효율적인 활성함수(activation function)와 옵티마이저(optimizer)를 활용한 특징맵(feature map)의 생성을 통해 상당히 높은 정확도를 도출할 수 있다. 본고에서는 최근 다양한 원격탐사 분야에서 활용성이 확대되고 있는 딥러닝 영상인식 기법인 Convolutional Neural Network (CNN) 기반 모델 및 Transformer 기반 모델에 대한 기술동향 및 사례연구를 검토하고, 우리나라에서 이들 기법의 활용방안 및 발전방향 등을 제시하고자 한다. 향후 원격탐사 기반의 재난 상황 대응을 위해서는 위성영상의 적시성 확보와 실시간 딥러닝 처리, 그리고 위성, 드론 및 Closed-circuit Television (CCTV) 영상이 함께 활용되는 영상 빅데이터 플랫폼도 개발되어야 할 것이다.
UWB 응용을 위해 스트립이 추가된 직각 삼각형-모양의 다이폴 소자로 구성된 소형 대수 주기 다이폴 배열 (LPDA; log periodic dipole array) 안테나를 제안하였다. 첫째, LPDA 안테나의 폭을 줄이기 위해 기존의 스트립 다이폴 소자 대신에 직각 삼각형-모양 다이폴 소자를 사용하였다. 둘째, 소자 사이의 간격을 줄여 LPDA 안테나의 길이를 줄였다. 마지막으로, 안테나의 폭을 더 줄이기 위해 직각 삼각형-모양 다이폴 소자의 양 팔의 끝에 스트립을 추가하였다. 16개의 다이폴 소자와 4 dBi 이상의 이득을 가지도록 제안된 안테나의 시제품을 FR4 기판에 44mm×30mm 크기로 제작하였다. 제작된 안테나의 전압 정재파비가 (VSWR; voltage standing wave ratio) 2 이하인 주파수 대역은 2.99-14.76 GHz로 UWB 대역을 만족하며, 측정된 이득은 4.0-5.5dBi이고 전후방비는 10 dB 이상이다. 제안된 소형 LPDA 안테나의 길이와 너비는 기존 LPDA에 비해 각각 40.9%와 20.6% 감소하였다.
운전 중 감정 인식은 사고를 예방하기 위해 꼭 필요한 과제이다. 더 나아가 자율 주행 시대에서 자동차는 모빌리티의 주체로 운전자와의 감정적인 소통이 더욱 요구되고 있으며 감정 인식 시장은 점점 확산되고 있다. 이에 따라 본 연구 방안에서는 수집하기 비교적 용이한 데이터인 심리데이터와 행동 데이터를 이용해 운전자의 감정을 분류하는 인공지능 모델을 개발하고자 한다. 오토인코더 모델을 통해 잠재 변수를 추출하고, 이를 본 분류 모델의 변수로 사용하였으며, 이는 성능 향상에 영향을 미침을 확인하였다. 또한 기존 뇌파 데이터를 포함했을 때 보다 본 논문이 제시하는 프레임워크를 사용하였을 때 성능이 향상됨도 확인하였다. 최종적으로 심리 및 개인정보데이터, 행동 데이터만을 통해 운전자의 감정 분류 정확도 81%와 F1-Score 80%를 달성하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.