• Title/Summary/Keyword: AI(artificial intelligence)

Search Result 1,960, Processing Time 0.024 seconds

Comparative analysis of US and China artificial intelligence patents trends

  • Kim, Daejung;Jeong, Joong-Hyeon;Ryu, Hokyoung;Kim, Jieun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.1
    • /
    • pp.25-32
    • /
    • 2019
  • With the rapid development of artificial intelligence technology, the patenting activities related to the fields of AI is increasing worldwide. In particular, a share of patent filed in China has exploded in recent years and overtakes the numbers in the US. In the present study, we focus our attention on the patenting activity of China and the US. We analyzed 6,281 and 13,664 patent applications in the US and China respectively between 2008 and 2018, and belonging to the "G06F(Electric Digital Data Processing)", "G06N(Computer Systems Based on Specific Computational Models)", "H04L(Transmission of Digital Information)" and nine more relevant technological classes, as indicated by the International Patent Classification(IPC). Our analysis contributes to: first, the understanding of patent application trends from foreign countries filed in the US and China, 2) patent application status by applicants category such as companies, universities and individuals, 3) the development direction and forecasting vacant technology of AI according to main IPC code. Through the analysis of this paper, we can suggest some implications for patent research related to artificial intelligence in Korea. Plus, by analyzing the most recent patent data, we can provide important information for future artificial intelligence technology research.

Artificial Intelligence Based Medical Imaging: An Overview (AI 의료영상 분석의 개요 및 연구 현황에 대한 고찰)

  • Hong, Jun-Yong;Park, Sang Hyun;Jung, Young-Jin
    • Journal of radiological science and technology
    • /
    • v.43 no.3
    • /
    • pp.195-208
    • /
    • 2020
  • Artificial intelligence(AI) is a field of computer science that is defined as allowing computers to imitate human intellectual behavior, even though AI's performance is to imitate humans. It is grafted across software-based fields with the advantages of high accuracy and speed of processing that surpasses humans. Indeed, the AI based technology has become a key technology in the medical field that will lead the development of medical image analysis. Therefore, this article introduces and discusses the concept of deep learning-based medical imaging analysis using the principle of algorithms for convolutional neural network(CNN) and back propagation. The research cases application of the AI based medical imaging analysis is used to classify the various disease(such as chest disease, coronary artery disease, and cerebrovascular disease), and the performance estimation comparing between AI based medical imaging classifier and human experts.

A Study on Factors Influencing AI Learning Continuity : Focused on Business Major Students

  • Park, So Hyun
    • The Journal of Information Systems
    • /
    • v.32 no.4
    • /
    • pp.189-210
    • /
    • 2023
  • Purpose This study aims to investigate factors that positively influence the continuous Artificial Intelligence(AI) Learning Continuity of business major students. Design/methodology/approach To evaluate the impact of AI education, a survey was conducted among 119 business-related majors who completed a software/AI course. Frequency analysis was employed to examine the general characteristics of the sample. Furthermore, factor analysis using Varimax rotation was conducted to validate the derived variables from the survey items, and Cronbach's α coefficient was used to measure the reliability of the variables. Findings Positive correlations were observed between business major students' AI Learning Continuity and their AI Interest, AI Awareness, and Data Analysis Capability related to their majors. Additionally, the study identified that AI Project Awareness and AI Literacy Capability play pivotal roles as mediators in fostering AI Learning Continuity. Students who acquired problem-solving skills and related technologies through AI Projects Awareness showed increased motivation for AI Learning Continuity. Lastly, AI Self-Efficacy significantly influences students' AI Learning Continuity.

A Study on Implementation Plan for AI Service Impact Assessment (인공지능 서비스 영향평가 추진방안에 대한 연구)

  • Shin, Sunyoung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.5
    • /
    • pp.147-157
    • /
    • 2022
  • The purpose of this study is to establish policy recommendations for the promotion of AI service impact assessment based on the definition of impact assessment and analysis of domestic and foreign AI service impact assessment cases. The direction of implementation was analyzed based on the case of impact evaluation promoted in various fields at home and abroad and the case of impact evaluation at home and abroad of artificial intelligence services. As a step-by-step implementation plan, in the first stage, quantitative indicators such as AI level survey-based economic effects are developed, and in the second stage, information culture such as safety and reliability and artificial intelligence ethics described in the Framework Act on Intelligence Information, social, economic, information protection, and people's daily lives are prepared. In the third stage, discussion on detailed metrics and methods will be expanded and impact assessment results will be evaluated. This study requires analysis through various participants such as policy designers, artificial intelligence service developers, and civic groups in the future.

Artificial Intelligence and College Mathematics Education (인공지능(Artificial Intelligence)과 대학수학교육)

  • Lee, Sang-Gu;Lee, Jae Hwa;Ham, Yoonmee
    • Communications of Mathematical Education
    • /
    • v.34 no.1
    • /
    • pp.1-15
    • /
    • 2020
  • Today's healthcare, intelligent robots, smart home systems, and car sharing are already innovating with cutting-edge information and communication technologies such as Artificial Intelligence (AI), the Internet of Things, the Internet of Intelligent Things, and Big data. It is deeply affecting our lives. In the factory, robots have been working for humans more than several decades (FA, OA), AI doctors are also working in hospitals (Dr. Watson), AI speakers (Giga Genie) and AI assistants (Siri, Bixby, Google Assistant) are working to improve Natural Language Process. Now, in order to understand AI, knowledge of mathematics becomes essential, not a choice. Thus, mathematicians have been given a role in explaining such mathematics that make these things possible behind AI. Therefore, the authors wrote a textbook 'Basic Mathematics for Artificial Intelligence' by arranging the mathematics concepts and tools needed to understand AI and machine learning in one or two semesters, and organized lectures for undergraduate and graduate students of various majors to explore careers in artificial intelligence. In this paper, we share our experience of conducting this class with the full contents in http://matrix.skku.ac.kr/math4ai/.

Top 10 Key Standardization Trends and Perspectives on Artificial Intelligence in Medicine (의료 인공지능 10대 표준화 동향 및 전망)

  • Jeon, J.H.;Lee, K.C.
    • Electronics and Telecommunications Trends
    • /
    • v.35 no.2
    • /
    • pp.1-16
    • /
    • 2020
  • "Artificial Intelligence+" is a key strategic direction that has garnered the attention of several global medical device manufacturers and internet companies. Large hospitals are actively involved in different types of medical AI research and cooperation projects. Medical AI is expected to create numerous opportunities and advancements in areas such as medical imaging, computer aided diagnostics and clinical decision support, new drug development, personal healthcare, pathology analysis, and genetic disease prediction. On the contrary, some studies on the limitations and problems in current conditions such as lack of clinical validation, difficulty in performance comparison, lack of interoperability, adversarial attacks, and computational manipulations are being published. Overall, the medical AI field is in a paradigm shift. Regarding international standardization, the work on the top 10 standardization issues is witnessing rapid progress and the competition for standard development has become fierce.

Potential role of artificial intelligence in craniofacial surgery

  • Ryu, Jeong Yeop;Chung, Ho Yun;Choi, Kang Young
    • Archives of Craniofacial Surgery
    • /
    • v.22 no.5
    • /
    • pp.223-231
    • /
    • 2021
  • The field of artificial intelligence (AI) is rapidly advancing, and AI models are increasingly applied in the medical field, especially in medical imaging, pathology, natural language processing, and biosignal analysis. On the basis of these advances, telemedicine, which allows people to receive medical services outside of hospitals or clinics, is also developing in many countries. The mechanisms of deep learning used in medical AI include convolutional neural networks, residual neural networks, and generative adversarial networks. Herein, we investigate the possibility of using these AI methods in the field of craniofacial surgery, with potential applications including craniofacial trauma, congenital anomalies, and cosmetic surgery.

Examining Development of Collaborative Artificial Intelligence in the Context of Classroom Instruction (수업활동 기반 협력적 인공지능 수학교사 개발에 대한 고찰)

  • Kim, Mi Ryung;Jung, Kyoung Young;Noh, Jihwa
    • East Asian mathematical journal
    • /
    • v.35 no.4
    • /
    • pp.509-528
    • /
    • 2019
  • As various changes in education in general and learning environment in particular have promoted different needs and expectations for learning at both personal and social levels, the roles that schools and school teachers typically have with respect to their students are being challenged. Especially with the recent, rapid progress of the artificial intelligence(AI) field, AI could serve beyond the way in which it has been used. Based on a review of some of the related literature and the current development of AI, a view on utilizing AI to be a collaborative, complementary partner with an human mathematics teacher in the classroom in order to support both students and teachers will be discussed.

Challenges for future directions for artificial intelligence integrated nursing simulation education

  • Sunyoung Jung
    • Women's Health Nursing
    • /
    • v.29 no.3
    • /
    • pp.239-242
    • /
    • 2023
  • Artificial intelligence (AI) has tremendous potential to change the way we train future health professionals. Although AI can provide improved realism, engagement, and personalization in nursing simulations, it is also important to address any issues associated with the technology, teaching methods, and ethical considerations of AI. In nursing simulation education, AI does not replace the valuable role of nurse educators but can enhance the educational effectiveness of simulation by promoting interdisciplinary collaboration, faculty development, and learner self-direction. We should continue to explore, innovate, and adapt our teaching methods to provide nursing students with the best possible education.