• Title/Summary/Keyword: AH-1

Search Result 5,320, Processing Time 0.037 seconds

The Effect of Crude Saponins of Korean Red Ginseng against Airway Inflammation and Airway Hyperresponsiveness Induced by Diesel Exhaust Particles in Mice (생쥐에서 디젤배기가스 입자에 의한 기도염증과 기도 과민성에 미치는 홍삼 조사포닌의 영향)

  • Lim, Heung-Bin;Kim, Seung-Hyung
    • Korean Journal of Medicinal Crop Science
    • /
    • v.17 no.2
    • /
    • pp.90-96
    • /
    • 2009
  • The objective of this study was to investigate the effect of crude ginseng total saponins (CGS) against airway inflammation (AI) and airway hyperresponsiveness (AH) induced by diesel exhaust particles (DEP) in mice. AI and AH were induced by the intratracheal instillation with 0.1 $mg/m{\ell}$ of DEP suspension once a week for 10 weeks combined with ovalbumin (OVA) sensitization. Mice were also treated orally with 75 $mg/m{\ell}$ of CGS, 5 days a week for 10 weeks. Oral CGS treatment decreased in the level of serum immunoglobulin (IgE) and histamine increased by DEP and OVA, and declined respiratory resistance. It also dropped an enhanced infiltration of eosinophils in the bronchoalveolar lavage fluid (BALF) of mice, and an increased T helper type 2 cell derived cytokine levels such as of interleukin (IL)-4, IL-13 and IL-5 in the BALF. However, it did not influence T helper type 1 cytokine such as interferon-gamma in the BALF. These results indicate that CGS may alleviate allergen-related AI and AH in mice and may play an important role in the modulation of asthmatic inflammation.

Battery Electrode Characteristics of Si-based Composite by Mechanical Alloying Method (기계적 합금화법에 의한 실리콘계 복합물질의 전지전극특성)

  • Lee, Churl-Kyoung;Lee, Jong-Ho;Lee, Sang-Woo
    • Journal of Powder Materials
    • /
    • v.16 no.6
    • /
    • pp.389-395
    • /
    • 2009
  • A Si-CuO-graphite composite was prepared by a mechanical alloying (MA) method. The Si-CuO composite has a mixture structure, where CuO is homogeneously dispersed in Si. Also, $Cu_2O$ and $Cu_3Si$ phases were formed during MA and heat treatment. Graphite with the Si-CuO composite was mixed in the same mill for 30 minutes with weight ratio of Si-CuO composite and graphite as 1:1. The Si-CuO composite was homogeneously covered with graphite. SiC phase was not formed. Electrochemical tests of the composite have been investigated, and the first charge and discharge capacities of the material were about 870mAh/g and 660mAh/g, respectively. Those values are about 76% of the first cycle efficiency. The cycle life of the composite showed that the initial discharge capacity of 660 mAh/g could be maintained up to 92% after 20 cycles.

Development of Silicone coated by Carbon driven PVDF and its anode characteristics for Lithium Battery (전구체로서 PVDF를 이용한 탄소 도포 실리콘 재료의 개발 및 리튬이차전지 음극 특성)

  • Doh, Chil-Hoon;Jeong, Ki-Young;Jin, Bong-Soo;Kim, Hyun-Soo;Moon, Seong-In;Yun, Mun-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.350-351
    • /
    • 2005
  • The electrochemical behavior of Si-C material synthesized by heating the mixture of silicon and polyvinylidene fluoride (PVDF). Coin cells of the type 2025 were made using the synthesized material and the electrochemical studies were performed. Si-C/Li cells were made by using the developed Si-C material. Charge/discharge test was performed at 0.1C hour rate. Initial charge and discharge capacities at Si-C material derived from 20 wt.% of PVDF was found to be 1,830 and 526 mAh/g respectively. Initial charge/discharge characteristics of the electrode were analyzed. The level of reversible specific capacity was about 216 mAh/g at Si-C material derived from 20 wt.% of PVDF, IIE, intercalation efficiency at initial charge/discharge, was 68 %. Surface irreversible specific capacity was 31 mAh/g, and average specific resistance was 2.6 ohm*g.

  • PDF

Effects of Exercise Periods of Aerobic Dance on the Serum HDL-Cholesterol in Middle - Aged Women (중년여성의 에어로빅댄스의 수행기간이 혈청 HDL-Cholesterol에 미치는 영향)

  • 안창순
    • The Korean Journal of Food And Nutrition
    • /
    • v.5 no.2
    • /
    • pp.123-131
    • /
    • 1992
  • This study was designed to find out the effects of aerobic exercise on the serum lipids in the middle-aged women. The effects of aerobic dancing on serum total cholesterol(TC), triglyceride(TG) and HDL-cholesterol (HDL-C) were studied in eight sedentary women(control group) and twenty seven aerobic exercising women(aerobic group) , aged 35∼45%. Aerobic exercising subjects were divided into 3 group; 2 to 3 months exercising group(Al), 4 to 10 months exercising group(AH), over 1 year exercising group(AIII) according to the periods of exercise. The serum lipid levels of aerobic exercising groups(AI, AII, AIIII) were compared with those of control group. The results statistically analyzed were summarized as follows : 1) The serum TG levels of aerobic groups decreased very significantly compared with those of control group(p< 0.001) and tended to be lower with the increase in aerobic periods. But there were no significant differences among aerobic groups by ANOVA. 2) The serum TC levels of aerobic groups decreased compared with those of control group and tended to be lower with the increase of aerobic periods. But there were no significant differences among groups. 3) Serum HDL-cholestrol level of A I group was elevated significantly compared with that of control group and significant difference was observed according to the aerobic periods : AR group exhibited higher serum HDL-cholesterol values than AH group, and AH group higher than A I group.

  • PDF

Battery Cell SOC Estimation Using Neural Network (뉴럴 네트워크를 이용한 배터리 셀 SOC 추정)

  • Ryu, Kyung-Sang;Kim, Ho-Chan
    • Journal of IKEEE
    • /
    • v.24 no.1
    • /
    • pp.333-338
    • /
    • 2020
  • This paper proposes a method of estimating the SOC(State of Charge) of a battery cell using a neural network algorithm. To this, we implement a battery SOC estimation simulator and derive input and output data for neural network learning through charge and discharge experiments at various temperatures. Finally, the performance of the battery SOC estimation is analyzed by comparing with the experimental value by Ah-counting using Matlab/Simulink program and confirmed that the error rate can be reduced to less than 3%.

The Cycling Performance of Graphite Electrode Coated with Tin Oxide for Lithium Ion Battery (리튬이온전지용 주석산화물이 도포된 흑연전극의 싸이클 성능)

  • Kang, Tae-Hyuk;Kim, Hyung-Sun;Cho, Won-Il;Cho, Byung-Won;Ju, Jeh-Beck
    • Journal of the Korean Electrochemical Society
    • /
    • v.5 no.2
    • /
    • pp.52-56
    • /
    • 2002
  • Tin oxide was coated on graphite particle by sol-gel method and an electrode with this material having microcrystalline structure for lithium ion battery was obtained by heat treatment in the range $400-600^{\circ}C$. The content of tin oxide was controlled within the range of $2.25wt\%\~11.1wt\%$. The discharge capacity increased with the content of tin oxide and also initial irreversible capacity increased. The discharge capacity of tin oxide electrode showed more than 350 mAh/g at the initial cycle and 300 mAh/g after the 30th cycle in propylene carbonate(PC) based electrolyte whereas graphite electrode without surface modification showed 140 mAh/g. When the charge and discharge rate was changed from C/5 to C/2, The discharge capacity of tin oxide and graphite electrode showed $92\%\;and\;77\%$ of initial capacity, respectively. It has been considered that such an enhancement of electrode characteristics was caused because lithium $oxide(Li_2O)$ passive film formed from the reaction between tin oxide and lithium ion prevented the exfoliation of graphite electrode and also reduced tin enhanced the electrical conduction between graphite particles to improve the current distribution of electrode.

Electrochemical Characteristics of 2-Dimensional Titanium Carbide(MXene)/Silicon Anode Composite Prepared by Electrostatic Self-assembly (정전기적 자가결합법으로 제조된 2차원 티타늄 카바이드(MXene)/실리콘 음극 복합소재의 전기화학적 특성)

  • Dong Min Kim;Jong Dae Lee
    • Korean Chemical Engineering Research
    • /
    • v.62 no.3
    • /
    • pp.262-268
    • /
    • 2024
  • In this study, the MXene/Si composite was prepared by electrostacic assembly with 2-dimensional structured titanium carbide (MXene) and nano silicon for anode material of high-performance lithium-ion battery. Ti3C2Tx MXene was synthesized by etching the Ti3AlC2 MAX with LiF/HCl, and the surface of nano silicon was charged to positively using CTAB (Cetyltrimethylammonium bromide). The MXene/Si anode composite was successfully manufactured by simple mixing process of synthesized MXene and charged silicon. The physical and electrochemical properties of prepared composite were investigated with MXene-silicon composition ratio, and the surface of electrode after cycles was analyzed to evaluate stability of the electrode. The MXene/Si composites demonstrated high initial discharge capacities of 1962.9, 2395.2 and 2504.3 mAh/g as the silicon composition ratio increased to 2, 3 and 4 compared to MXene, respectively. MXene/Si-4, which is MXene and silicon ratio with 1 : 4, exhibited 1387.5 mAh/g of reversible capacity, 74.5% of capacity retention at 100 cycles and high capacity of 700.5 mAh/g at high rate of 4.0 C. As the results, the MXene/Si composite prepared by electrostatic-assenbly could be applied to anode materials for high-performance LIBs.

A Study on the Electrochemical Properties of Carbon Nanotube Anodes Using a Gradual Increasing State of Charge Method

  • Doh, Chil-Hoon;Park, Cheol-Wan;Jin, Bong-Soo;Moon, Seong-In;Yun, Mun-Soo
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.4C no.1
    • /
    • pp.21-25
    • /
    • 2004
  • From the gradual increasing state of charge (GISOC) observations, electrochemical behavior of multi-walled carbon nanotube│(lM LiP $F_{6}$ , EC,DEC,DME 3:5:5 volume ratio)│lithium cells was evaluated using the galvanostatic charge-discharge process. A MWCNT delivers a specific charge capacity of 1,300 mAh/g in a Li cell when cycled up to an end voltage of 0 V (vs. Li/L $i^{+}$ )at a constant current rate every 10 hours. However, in the present study, the specific discharge capacity obtained is 338 mAh/g, thus amounting to a coulombic efficiency of only 26%. Further, when the MWCNT│Li cells were tested using the GISOC method, two distinguishable linear-fit ranges were observed due to the intercalation/deintercalation of lithium, which were found to have II $E_1$, IIC $s_1$ and II $E_2$of 27.3%, 372 mAh/g, and 25.5%, respectively. Q $c_1$, could be calculated from the data of IIE and IICs of each range by the modified equation "II $C_{sum}$= $\Sigma$( $Q_{C}$- $Q_{D}$)=(II $E_{1}$$^{-1}$ ) $Q_{Dl}$ +(II $E_2$$^{-1}$ -1) ( $Q_{D2}$- $Q_{Dl}$ ) + IIC $s_1$= $Q_{Cl}$ - $Q_{Dl}$ ". Results of the GISOC method could be converted to the results of galvanostatic charge-discharge process, irrespective of the state of charge of the cell or battery.ery.y.y.

Initial Charge/Discharge of $LiCoO_2$ Composite Cathode with Various Content of Conductive Material for the Lithium ion Battery (리튬이온전지용 $LiCoO_2$정극의 도전재료에 따른 초기 충방전 특성)

  • Doh Chil-Hoon;Moon Seong-In;Yun Mun-Soo;Yun Suong-Kyu;Yum Duk-Hyung;Park Chun-Jun
    • Journal of the Korean Electrochemical Society
    • /
    • v.2 no.3
    • /
    • pp.123-129
    • /
    • 1999
  • Initial electrochemical characteristics of $LiCoO_2$ electrode for lithium ion battery with various content of super s black as conductive material were evaluated through the charge/discharge with the potential range of 4.3V to 2.0V versus $Li^+/Li^+$. The rate of C/4 and C/2 by the 3 electrode test cell composed with an electrolytic solution of 1 mol/l $LiPF_6/EC+DEC(1:3\;by\; weight)$. Lithium was used as reference electrode. High impedance charge behavior was observed at early stage of charge. In the case of $3\%w/w$ of super s black as conductive material, the specific resistance of the high impedance releasing was $3.82\;{\Omega}\;{\cdot}\;g-LiCoCo_2$ at the current density of $0.5 mA/cm^2$, which corresponds 7 times of the specific resistance of electrode $(0.728 g-LiCoO_2)$. At second charge, the specific resistance of the high impedance releasing was 63 mn · g-Lico02, which corresponds 12eio of the specific resistance of electrode and only $1.7\%$ of that of the first charge. The first charge and discharge specific capacities at C/4 rate were 160-161 and $153\~155mAh/g-LiCoO_2$, respectively, to lead $95.4\~96.4\%$ of coulombic efficiencies and ca. $6 mAh/g-LiCoO_2$ of initial irreversible specific capacity. Specific resistance at the end of charge and rest showed low value at content of super s black between 2 and $7\%w/w$, which agreed with characteristics of irreversible specific capacity. Capacity densities were reduced by the increasing the content of conductive material. They were 447 and 431mAh/ml when 2 and $2.9\%w/w$ of super s black were used, respectively, at the rate of C/4.

Synthesis and Electrochemical Characteristics of Silicon/Carbon Anode Composite with Binders and Additives (Silicon/Carbon 음극소재 제조 및 바인더와 첨가제에 따른 전기화학적 특성)

  • Park, Ji Yong;Lee, Jong Dae
    • Korean Chemical Engineering Research
    • /
    • v.56 no.3
    • /
    • pp.303-308
    • /
    • 2018
  • Silicon/Carbon (Si/C) composite as anode materials for lithium-ion batteries was synthesized to find the effect of binders and an electrolyte additive. Si/C composites were prepared by two step method, including magnesiothermic reduction of SBA-15 (Santa Barbara Amorphous material No. 15) and carbonization of phenol resin. The electrochemical performances of Si/C composites were investigated by charge/discharge, cyclic voltammetry and impedance tests. The anode electrode of Si/C composite with PAA binder appeared better capacity (1,899 mAh/g) and the capacity retention ratio (92%) than that of other composition coin cells during 40 cycles. Then, Vinylene carbonate (VC) was tested as an electrolyte additive. The influence of this additive on the behavior of Si/C anodes was very positive (3,049 mAh/g), since the VC additive is formed passivation films on Si/C surfaces and suppresses irreversible changes.