• Title/Summary/Keyword: AFM Cantilever

Search Result 94, Processing Time 0.025 seconds

Accurate Determination of Spring Constants of Micro Cantilevers for Quantified Force Metrology in AFM (AFM에서의 정량적 힘 측정을 위한 마이크로 캔틸레버의 강성 교정)

  • Kim, Min-Seok;Choi, Jae-Hyuk;Kim, Jong-Ho;Park, Yon-Kyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.6
    • /
    • pp.96-104
    • /
    • 2007
  • Calibration of the spring constants of atomic force microscopy (AFM) cantilevers is one of the issues in biomechanics and nanomechanies for quantified force metrology at pieo- or nano Newton level. In this paper, we present an AFM cantilever calibration system: the Nano Force Calibrator (NFC), which consists of a precision balance and a one-dimensional stage. Three types of AFM cantilevers (contact and tapping mode) with different shapes (beam and V) and spring constants (42, 1, 0.06 N $m^{-1}$) are investigated using the NFC. The calibration results show that the NFC can calibrate the micro cantilevers ranging from 0.01 ${\sim}$ 100 N $m^{-1}$ with relative uncertainties of less than 2%.

Quantitative Lateral Force Calibration of V-shaped AFM Cantilever (V 형상을 가지는 원자현미경 Cantilever의 정량적 마찰력 교정)

  • Lee, Huijun;Kim, Kwanghee;Kim, Hyuntae;Kang, Boram;Chung, Koo-Hyun
    • Tribology and Lubricants
    • /
    • v.28 no.5
    • /
    • pp.203-211
    • /
    • 2012
  • Atomic force microscopy (AFM) has been used as a tool, not only for imaging surfaces, but also for measuring surface forces and mechanical properties at the nano-scale. Force calibration is crucial for quantitatively measuring the forces that act between the AFM probe of a force sensing cantilever and a sample. In this work, the lateral force calibrations of a V-shaped cantilever were performed using the finite element method, multiple pivot loading, and thermal noise methods. As a result, it was shown that the multiple pivot loading method was appropriate for the lateral force calibration of a V-shaped cantilever. Further, through crosschecking of the abovementioned methods, it was concluded that the thermal noise method could be used for determining the lateral spring constants as long as the lateral deflection sensitivity was accurately determined. To obtain the lateral deflection sensitivity from the sticking portion of the friction loop, the contact stiffness should be taken into account.

Molecular Dynamics Simulation of Contact Process in AFM/FFM Surface Observation

  • Shimizu, J.;Zhou, L.;Eda, H.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.61-62
    • /
    • 2002
  • In order to clarify the contact mechanism between specimen surface and probe tip in the surface observation by the AFM (atomic force microscope) or the FFM (friction force microscope), several molecular dynamics simulations have been performed. In the simulation, a 3-dimensional simulation model is proposed where the specimen and the probe are assumed to consist of mono-crystal line copper and a carbon atom respectively and the effect of cantilever stiffness is also taken into considered. The surface observation process on a well-defined Cu{100} is simulated. The influences of cantilever stiffness on the reactive force images and the behavior of probe tip were evaluated. As a resuIt, several phenomena similar to those observed by the actual surface observation experiment, such as double-slip behavior and dispersion in the stick-slip wave period were observed.

  • PDF

Etch Resistance of Mask Layer modified by AFM-based Tribo-Nanolithography in Aqueous Solution (AFM 기반 액중 Tribo nanolithography 에서의 마스크 층 내식각성에 관한 연구)

  • Park Jeong-Woo;Lee Deug-Woo;Kawasegi Noritaka;Morita Noboru
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.268-271
    • /
    • 2005
  • Etch resistance of mask layer on silicon substrate modified by AFM-based Tribo-Nanolithography (TNL) in Aqueous Solution in an aqueous solution was demonstrated. n consists or sequential processes, nano-scratching and wet chemical etching. The simple scratching can form a mask layer on the silicon substrate, which acting as an etching mask. For TNL, a specially designed cantilever with diamond tip, allowing the formation of mask layer on silicon substrate easily by a simple scratching process, has been applied instead of conventional silicon cantilever fur scanning. This study demonstrates how the TNL parameters can affect the etch resistance of mask layer, hence introducing a new process of AFM-based maskless nanolithography in aqueous solution.

  • PDF

Fabrication of Micro Diamond Tip Cantilever for AFM and its Applications (AFM 부착형 초미세 다이아몬드 팁 켄틸레버의 제작 및 응용)

  • Park J.W.;Lee D.W.
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.395-400
    • /
    • 2005
  • Nano-scale fabrication of silicon substrate based on the use of atomic force microscopy (AFM) was demonstrated. A specially designed cantilever with diamond tip, allowing the formation of damaged layer on silicon substrate by a simple scratching process, has been applied instead of conventional silicon cantilever for scanning. A thin damaged layer forms in the substrate at the diamond tip-sample junction along scanning path of the tip. The damaged layer withstands against wet chemical etching in aqueous KOH solution. Diamond tip acts as a patterning tool like mask film for lithography process. Hence these sequential processes, called tribo-nanolithography, TNL, can fabricate 2D or 3D micro structures in nanometer range. This study demonstrates the novel fabrication processes of the micro cantilever and diamond tip as a tool for TNL using micro-patterning, wet chemical etching and CVD. The developed TNL tools show outstanding machinability against single crystal silicon wafer. Hence, they are expected to have a possibility for industrial applications as a micro-to-nano machining tool.

  • PDF

Evaluation of Elastic Properties for Nanoscale Coating Layers Using Ultrasonic Atomic Force Microscopy (초음파원자현미경을 이용한 나노스케일 박막 코팅층에 대한 탄성특성 평가)

  • Kwak, Dong Ryul;Cho, Seung Bum;Park, Ik Keun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.5
    • /
    • pp.475-480
    • /
    • 2015
  • Ultrasonic atomic force microscopy (Ultrasonic-AFM) has been used to investigate the elastic property of the ultra-thin coating layer in a thin-film system. The modified Hertzian theory was applied to predict the contact resonance frequency through accurate theoretical analysis of the dynamic characteristics of the cantilever. We coat 200 nm thick Aluminum and Titanium thin films on the substrate using the DC Magnetron sputtering method. The amplitude and phase of the contact resonance frequency of a vibrating cantilever varies in response to the local stiffness constant. Ultrasonic-AFM images were obtained using the variations in the elastic property of the materials. The morphology of the surface was clearly observed in the Ultrasonic-AFM images, but was barely visible in the topography. This research demonstrates that Ultrasonic-AFM is a promising technique for visualizing the distribution of local stiffness in the nano-scale thin coatings.

Method of manufacturing and characteristics of a functional AFM cantilever (기능성 원자간력 현미경 캔틸레버 제조 방법과 특성)

  • Suh Moon Suhk;Lee Churl Seung;Lee Kyoung Il;Shin Jin-Koog
    • 정보저장시스템학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.56-58
    • /
    • 2005
  • To illustrate an application of the field effect transistor (FET) structure, this study suggests a new cantilever, using atomic force microscopy (AFM), for sensing surface potentials in nanoscale. A combination of the micro-electromechanical system technique for surface and bulk and the complementary metal oxide semiconductor process has been employed to fabricate the cantilever with a silicon-on-insulator (SOI) wafer. After the implantation of a high-ion dose, thermal annealing was used to control the channel length between the source and the drain. The basic principle of this cantilever is similar to the FET without a gate electrode.

  • PDF