• Title/Summary/Keyword: AESA Radar

Search Result 45, Processing Time 0.03 seconds

Development of Radar Beam Steering Measurement System and measurement Boresight Error (레이다 빔조향 특성 측정 장치 개발 및 보어 사이트 에러 측정)

  • Yong-kil Kwak
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.5
    • /
    • pp.546-551
    • /
    • 2023
  • In this study, a beam steering measurement system was developed to perform functions such as far-field beam steering and near-field beam focusing for TX/RX modes in the near file of the AESA radar. The beam steering measurement system consists of a spherical near-field scanner, an antenna positioner, a near-field controller, a network analyzer, a radar control system, a verification radar, a simulated radio, and an AESA radar. Using the developed system, the characteristics of TX/RX patterns before and after installation of radome to AESA radar were measured, and the beam pattern was analyzed through conversion to far field-after near-field measurement.The boresight error of the radar antenna device was measured, and it was confirmed that the main lobes were formed the same before and after the simulated radar dome was mounted.

Optimal Hierarchical Design Methodology for AESA Radar Operating Modes of a Fighter (전투기 AESA 레이더 운용모드의 최적 계층구조 설계 방법론)

  • Heungseob Kim;Sungho Kim;Wooseok Jang;Hyeonju Seol
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.4
    • /
    • pp.281-293
    • /
    • 2023
  • This study addresses the optimal design methodology for switching between active electronically scanned array (AESA) radar operating modes to easily select the necessary information to reduce pilots' cognitive load and physical workload in situations where diverse and complex information is continuously provided. This study presents a procedure for defining a hidden Markov chain model (HMM) for modeling operating mode changes based on time series data on the operating modes of the AESA radar used by pilots while performing mission scenarios with inherent uncertainty. Furthermore, based on a transition probability matrix (TPM) of the HMM, this study presents a mathematical programming model for proposing the optimal structural design of AESA radar operating modes considering the manipulation method of a hands on throttle-and-stick (HOTAS). Fighter pilots select and activate the menu key for an AESA radar operation mode by manipulating the HOTAS's rotary and toggle controllers. Therefore, this study presents an optimization problem to propose the optimal structural design of the menu keys so that the pilot can easily change the menu keys to suit the operational environment.

Multiple Target Management of Air-to-Air mode on Airborne AESA Radar (항공기 탑재 AESA 레이다의 공대공 모드 다표적 관리 기법)

  • Yong-min Kim;Ji-eun Roh
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.5
    • /
    • pp.580-586
    • /
    • 2023
  • AESA radar is able to instantaneously and adaptively position and control the beam, and this enables to greatly improve multi-target tracking capability with high accuracy in comparison to traditional mechanically-scanned radar system. This paper is primarily concerned with the development of an efficient methodology for multi-target managenent with the context of multi-target environment employing AESA radar. In this paper, targets are stratified into two principal categories: currently displayed targets and non-display targets, predicated upon their relative priority. Displayed targets are subsequently stratified into TOI (target of interest), HPT (high priority target), and SAT (situational awareness target), based on the requisite levels of tracking accuracy. It also suggests rules for determining target priority management, especially in air-to-air mode including interleaved mode. This proposed approach was tested and validated in a SIL (system integration lab) environment, applying it to AESA radars mounted on aircraft.

Radiator Design Method considering Wide-Angle Beam Steering Characteristics of AESA Radar (AESA 레이더 광각 빔조향 특성을 고려한 복사소자 설계 기법)

  • Kim, Young-Wan;Chae, Hee-Duck;An, Se-Hwan;Joo, Ji-Han
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.5
    • /
    • pp.87-92
    • /
    • 2022
  • In this paper, a study was conducted on the design of an array element that can be applied to the AESA radar for seeker. An antenna for application to AESA radar should choose an optimal radiation element to be applied to an array antenna in order to secure electronical beam steering characteristics, and consider beam steering characteristics when designing. In particular, in order to satisfy the wide-angle beam steering characteristics, the wide-angle impedance matching technique should be used to minimize the scan blindness region that may occur during wide-angle steering. As such, securing the stability of system operation is becoming an important design consideration for AESA radar. In this paper, WAIM is applied to the end of the radiation element to improve the characteristics of the radiation element applied to the AESA radar antenna device, and the change in the performance of the active reflection coefficient, which is a stable operation index of the system, is reviewed. The final performance result verified the validity of the proposed method by mathematically synthesizing the simulation data.

Beam Scheduling Algorithm of Multi-Function AESA Radar Based on Dispatching Rules (Dispatching Rule에 기반한 능동 위상 배열 다기능 레이더의 빔 스케줄링 기법)

  • Roh, Ji-Eun;Ahn, Chang-Soo;Kim, Seon-Joo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.1
    • /
    • pp.1-13
    • /
    • 2012
  • AESA radar is able to instantaneously and adaptively position and control the beam, and such adaptive beam pointing of AESA radar enables to remarkably improve the multi-mission capability, compared with mechanically scanned array radar. AESA radar brings a new challenges, radar resource management(RRM), which is a technique efficiently allocating finite resources, such as energy and time to each task in an optimal and intelligent way. Especially radar beam scheduling is the most critical component for the success of RRM. In this paper, we proposed the several dispatching rules for radar beam scheduling, and compared the performance on the multi-function radar scenario. We also showed that the dispatching rule which differently applying SPF(Shortest Processing time First) and ERF(Earliest Request time First) according to beam processing latency is the most efficient.

Progressive Test and Evaluation Strategy for Verification of KF-X AESA Radar Development (한국형 전투기(KF-X) AESA 레이다 개발 검증을 위한 점진적인 시험평가 전략)

  • Shinyoung Cho;Yongkil Kwak;Hyunseok Oh;Hyesun Ju;Hongwoo Park
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.27 no.3
    • /
    • pp.387-394
    • /
    • 2024
  • This paper describes a progressive test and evaluation strategy for verification of Korean Fighter eXperimental (KF-X) AESA(Active Electronically Scanned Array) radar development. Three progressive stages of development test and evaluation were officially performed from simulated test conditions to actual operating conditions according to standards: radar function/performance and avionics integration. KF-X AESA radar development is repeatedly verified by progressive stages consisting of five tests: Roof-lab ground test, System Integration Laboratory(SIL) ground test, Flying Test Bed(FTB) test, KF-X ground test, and KF-X flight test. As a result, the risk factor decreases as stages and tests progress. Therefore, development test and evaluation of KF-X AESA radar are successfully performed at low development risk.

Domestic Environment Analysis for Building FTB Aircraft with AESA Radar (AESA Radar 탑재 FTB 항공기 구축을 위한 국내환경 분석)

  • Park, Jehong;Hong, Gyoyoung;Eom, Jeonghwan;Chong, Pilhan;Hong, Seungbeom
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.1
    • /
    • pp.9-15
    • /
    • 2020
  • Recently, active electronically scanned array (AESA) radar, electro-optical and infrared (EO-IR) and infra-red search and track (IRST) sensors are under development in the Korean fighter experimental(KF-X) project, and AESA radar is currently undergoing preliminary research for flight testing. This paper focuses on the flying test bed (FTB) aircraft operation cases of developed countries in accordance with AESA radar development. As a result, we review domestic laws and regulations related to the airworthiness for FTB aircraft to operate in domestic environment and look for ways to operate FTB aircraft. Therefore, we propose how to selecting, airworthiness and operating FTB aircraft suitable for the domestic environment.

Design and Implementation of Radar Resource Management Algorithms for Airborne AESA Radar (항공기 탑재 능동 위상배열 레이더의 자원관리 알고리즘 설계 및 구현)

  • Roh, Ji-Eun;Chon, Sang-Mi;Ahn, Chang-Soo;Jang, Seong-Hoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.12
    • /
    • pp.1190-1197
    • /
    • 2013
  • AESA(Active Electronically Scanned Array radar) radar is able to instantaneously and adaptively position and control the beam, and such adaptive beam pointing of AESA radar enables to remarkably improve the multi-mission capability. For this reason, radar resource management(RRM) becomes new challenging issue. RRM is a technique efficiently allocating finite resources, such as energy and time to each task in an optimal and intelligent way. This paper deals with a design of radar resource management algorithms and simulator implemented main algorithms for development of airborne AESA radar. In addition, evaluation results show that developed radar system satisfies a main requirement about simultaneous multiple target tracking and detection by adopting proposed algorithms.

Resource Allocation for Performance Optimization of Interleaved Mode in Airborne AESA Radar (항공기탑재 AESA 레이다의 동시운용모드 성능 최적화를 위한 자원 할당)

  • Yong-min Kim;Ji-eun Roh;Jin-Ju Won
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.5
    • /
    • pp.540-545
    • /
    • 2023
  • AESA radar is able to instantaneously and adaptively position and control the beam, and this enables to have interleaved mode in modern airborne AESA radar which can maximize situational awareness capability. Interleaved mode provides two or more modes simultaneously, such as Air to Air mode and Sea Surface mode by time sharing technique. In this interleaved mode, performance degradation is inevitable, compared with single mode operation, and effective resource allocation is the key component for the success of interleaved mode. In this paper, we identified performance evaluation items for each mode to analyze interleaved mode performance and proposed effective resource allocation methodology to achieve graceful performance degradation of each mode, focusing on detection range. We also proposed beam scheduling techniques for interleaved mode.

Stochastic Radar Beam Scheduling Using Simulated Annealing (Simulated Annealing을 이용한 추계적 레이더 빔 스케줄링 알고리즘)

  • Roh, Ji-Eun;Ahn, Chang-Soo;Kim, Seon-Joo;Jang, Dae-Sung;Choi, Han-Lim
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.2
    • /
    • pp.196-206
    • /
    • 2012
  • AESA radar is able to instantaneously and adaptively position and control the beam, and such adaptive beam pointing of AESA radar enables to remarkably improve the multi-mission capability, compared with mechanically scanned array radar. AESA radar brings a new challenges, radar resource management(RRM), which is a technique efficiently allocating finite resources, such as energy and time to each task in an optimal and intelligent way. Especially radar beam scheduling is the most critical component for the success of RRM. In this paper, we proposed stochastic radar beam scheduling algorithm using simulated annealing(SA), and evaluated the performance on the multi-function radar scenario. As a result, we showed that our proposed algorithm is superior to previous dispatching rule based scheduling algorithm from the viewpoint of beam processing latency and the number of scheduled beams, with real time capability.