• Title/Summary/Keyword: AE Source Location

Search Result 88, Processing Time 0.024 seconds

Application of AE Technique for On-line monitoring of Quencl in superconducting coil at Cryogenic Environment (음향방출을 이용한 극저온 환경하에서의 초전도 계자코일의 ?칭탐지에 관한 연구)

  • 이준현;이민래;권영길;류강식
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 1999.02a
    • /
    • pp.34-38
    • /
    • 1999
  • An acoustic emission(AE) technique has been used to monitor and diagnose quenching phenomenon in racetrack shaped superconducting magnets at cryogenic environment of 4.2K. The ultimate goal is to ensure the safety and reliability of large superconducting magnet systems by being able to identity and locate the sources of quench in superconducting magnets. The characteristics of AE parameters have been analyzed by correlating with quench number, winding tension of superconducting coil and charge rate by transport current. It was found in this study stat there was good correlation between quench current and AE parameters. The source location of quenching in superconducting magnet was also discussed on the correlation between magnet voltage and AE energy.

  • PDF

A Study on the Measurement of Acoustic Emission and Deformation Behaviors of Rock and Concrete under Compression (암석 및 콘크리트의 압축변형거동과 미소파괴음 측정에 관한 연구)

  • 심현진;이정인
    • Tunnel and Underground Space
    • /
    • v.10 no.1
    • /
    • pp.59-69
    • /
    • 2000
  • Acoustic emission is n burst of microseismic waves generated by microscopic failure due to deformation in materials. The study on the detection of initiation and propagation of microcracks from acoustic emission measurement is very important for the evaluation of the stability of underground rock structures by the nondestructive letting method. In this study, acoustic emission was measured under uniaxial stiffness loading test used to obtain the complete stress-strain curves of marble and concrete used as reinforced materials of rock structures. The analysis of acoustic emission parameters and source location were performed to discuss the characteristics of the deformation and failure behavior of rock and concrete. And acoustic emission was measured under cyclic loading test to verify the Kaiser effect associated with the damage of materials, in situ stress of rock, and stress history of concrete structure.

  • PDF

Acoustical analysis and signal processing for leak location of buried pipes (지하매설 배관의 누수지점 탐지를 위한 음향학적 해석 및 신호처리)

  • Lee Young-Sup;Yoon Dong-Jin;Baek Kwang-Hyun;Kim Sang-Moo
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.225-230
    • /
    • 2004
  • Leak noise is a good source to identify the exact location of a leak point of underground water pipelines. Water leak generates broadband noise from a leak location and can be propagated to both directions of water pipes. However, the necessity of long-range detect ion of this leak location makes to identify low-frequency acoustic waves rather than high frequency ones. Acoustic wave propagation coupled with surrounding boundaries including cast iron pipes is theoretical analyzed and the wave velocity was confirmed with experiment The leak locations were identified both by the acoustic emission (AE) method and the cross-correlation method. In a short-range distance, both the AE method and cross-correlation method are effective to detect leak position. However, the detect ion for a long-range distance required a lower frequency range accelerometers only because higher frequency waves were attenuated very quickly with the increase of propagation paths. Two algorithms for the cross-correlation function were suggested and a long-range detection has been achieved at real underground water pipelines longer than 300m.

  • PDF

Time Delay Estimation for the Identification of Leak Location (시간지연 추정을 통한 누수위치 식별 연구)

  • Lee, Young-Sup;Yoon, Dong-Jin;Kim, Chi-Yup
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.327-332
    • /
    • 2004
  • Leak noise is a good source to identify the exact location of a leak point of underground water pipelines. Water leak generates broadband noise from a leak location and can be propagated to both directions of water pipes. This sound propagation due to leak in water pipelines is not a non-dispersive wave any more because of the surrounding pipes and soil. However, the necessity of long-range detection of this leak location makes to identify low-frequency acoustic waves rather than high frequency ones. Acoustic wave propagation coupled with surrounding boundaries including cast iron pipes is theoretically analyzed and the wave velocity was confirmed with experiment. The leak locations were identified both by the acoustic emission (AE) method and the cross-correlation method. In a short-range distance, both the AE method and cross-correlation method are effective to detect leak position. However, the detection for a long-range distance required a lower frequency range accelerometers only because higher frequency waves were attenuated very quickly with the increase of propagation paths. Two algorithms for the cross-correlation function were suggested, and a long-range detection has been achieved at real underground water pipelines longer than loom.

  • PDF

Application of Acoustic Emission Technique for Detection of Crack in Mortar and Concrete (모르터와 콘크리트의 균열검출을 위한 음향방출기법의 적용)

  • 진치섭;신동익;장종철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.739-744
    • /
    • 2000
  • Concrete structures generally have cracks, so for the safety and durability of structures, studies to detect cracks using nondestructive tests have been treated in great deal. In order to assure the reliability of concrete structure, microscopic fracture behavior and internal damage progress of concrete under the loading should be fully understood. The purpose of this study predicts location of initial crack and measures direction of crack propagation for on-line monitoring before the crack really grows in structures by using two-dimensional Acoustic Emission(AE) source location based on rectangular method with three-point bending test. This will allow efficient maintenance of concrete structure through monitoring of internal cracking based on AE method.

  • PDF

Algorithm Development and Experimental Verification of Acoustic Emission First-arrival-time Determination for the Source Location (정확한 미소파괴음의 발생위치 분석을 위한 신호 도달시간 결정 알고리즘 연구 및 실험적 검증)

  • Jang, Hyun-Sic;Choi, Jun-Young;Jang, Bo-An
    • The Journal of Engineering Geology
    • /
    • v.25 no.4
    • /
    • pp.587-598
    • /
    • 2015
  • We examined various existing threshold methods for the determination of the first arrival time of acoustic emission (AE), and developed a new variable threshold method that could determine the first arrival time of AE more accurately and more quickly than existing methods. The new method, a modification of an existing threshold method, does not fix the threshold, but applies variable thresholds for the AE signals according to noise analysis. Two- and three-dimensional models were established to test the effectiveness of the new method. It could determine source locations of AE in a two-dimensional model 38.3% more accurately than the pre-existing threshold methods. Its accuracy improvement over the existing methods in a three-dimensional model was about 15.2%. A practical test involved measuring the source locations of AE during three-point bending tests of granite cores. The new method placed the sources closer to the fracture plane than did the pre-existing methods, indicating its superior (and quicker) ability to determine the source locations of AE.

A Study on Fracture Behaviors of Single-Edge-Notched Glass Fiber/Aluminum Laminates Using Acoustic Emission (음향방출법을 이용한 편측노치를 갖는 유리섬유/알루미늄 적층판의 파괴거동 해석)

  • Woo Sung-Choong;Choi Nak-Sam
    • Composites Research
    • /
    • v.18 no.2
    • /
    • pp.1-12
    • /
    • 2005
  • Fracture behaviors of single-edge-notched monolithic aluminum plates and glass fiber/aluminum laminates under tensile loadings have been studied using acoustic emission(AE) monitoring. AE signals from monolithic aluminum could beclassified into two different types. For glass fiber/aluminum laminates, AE signals with high amplitude and long duration were additionally confirmed on FFT frequency analysis, which corresponded to macrocrack propagation and/or delamination. AE source location determined by signal arrival time showed the zone of fracture. On the basis of the above AE analysis and fracture observation, characteristic features of fracture processes of single-edge-notched glass fiber/aluminum laminates were elucidated according to different fiber ply orientations and fiber/aluminum lay-up ratios.

Development of Leak Detection System of Heat Exchanger using Acoustic Emission Technique (음향방출기법을 이용한 열교환기 누설 검출 시스템 개발)

  • Lee, Min-Rae;Lee, Joon-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.65-71
    • /
    • 2001
  • In this paper, acoustic omission technique(AE) has been applied to detect leak for heat exchanger by analyzing the characteristics of signal obtained from leak. It was confirmed that the characteristics of the signal generated by the turbulence of gas in the heat exchanger is narrow band signal having between 130-250KHz. Generally, the amplitude of leak signal is increased as the leak size increasing, but showed no significant change at frequency characteristic. Leak source location can be found by searching for the point of highest signal amplitude by comparing wi th several fired sensors.

  • PDF

Characteristics of Corrosion Damages in Bottom Plate of Above Ground Tank by Acoustic Emission Signal (지상탱크 저판부의 부식손상 평가를 위한 음향방출 신호의 분석)

  • Kim, Sung-Dai;Jung, Woo-Gwang;Lee, Jong-O
    • Journal of the Korean Institute of Gas
    • /
    • v.11 no.4
    • /
    • pp.64-72
    • /
    • 2007
  • Under the AE methods, the valid condition analysis and evaluation the leak etc, resulted by the AE signal pattern on the bottom plate of ground tank at full. In next more, the gradient of accumulation amplitude distribution analysis and comparison the energy, count, and duration time that noise of EMI signal were removed. EMI signal showed height-energy, count, and duration time, it also appeared great gradient of accumulation distribution. Then, with the pure remaining AE signals cluster analysis and location. It would possibly assume of damage with corrosion. Total cluster 20 and energy showed between the maximum 11,990 and 8,565 which is much lower than above figure and event number showed from 8 to 5. Even when it difficult to certify damage by open, as it is raised higher height-sensitivity and threshold by 60 dB. It would possibly presume of location source more accurately.

  • PDF

An Algorithm for Leak Locating using Coupled Vibration of Pipe-Water (배관-유체 연성진동을 이용한 누수지점 탐지알고리듬 개발연구)

  • Lee, Yeong-Seop;Yun, Dong-Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.985-990
    • /
    • 2004
  • Leak noise is a good source to identify the exact location of a leak point of underground water pipelines. Water leak generates broadband noise from a leak location and can be propagated to both directions of water pipes. This sound propagation due to leak in water pipelines is not a non-dispersive wave any more because of the surrounding pipes and soil. However, the necessity of long-range detection of this leak location makes to identify low-frequency acoustic waves rather than high frequency ones. Acoustic wave propagation coupled with surrounding boundaries including cast iron pipes is theoretically analyzed and the wave velocity was confirmed with experiment. The leak locations were identified both by the acoustic emission (AE) method and the cross-correlation method. In a short-range distance, both the AE method and cross-correlation method are effective to detect leak position. However, the detection for a long-range distance required a lower frequency range accelerometers only because higher frequency waves were attenuated very quickly with the increase of propagation paths. Two algorithms for the cross-correlation function were suggested, and a long-range detection has been achieved at real underground water pipelines longer than 300m.

  • PDF