• Title/Summary/Keyword: AE, Acoustic Emission

Search Result 825, Processing Time 0.027 seconds

A review of the application of acoustic emission technique in engineering

  • Gholizadeh, S.;Leman, Z.;Baharudin, B.T.H.T.
    • Structural Engineering and Mechanics
    • /
    • v.54 no.6
    • /
    • pp.1075-1095
    • /
    • 2015
  • The use of acoustic emission (AE) technique for detecting and monitoring damages and the progress on damages in different structures is widely used and has earned a reputation as one of the most reliable and well-established technique in non-destructive testing (NDT). Acoustic Emission is a very efficient and effective technology used for fracture behavior and fatigue detection in metals, fiberglass, wood, composites, ceramics, concrete and plastics. It can also be used for detecting faults and pressure leaks in vessels, tanks, pipes, as well as for monitoring the progression of corrosion in welding. This paper reviews major research developments over the past few years in application of acoustic emission in numerous engineering fields, including manufacturing, civil, aerospace and material engineering.

Pre-service Acoustic Emission Testing for Metal Pressure Vessel (금속압력용기의 사용 전 음향방출시험)

  • Lee, Jong-O;Yoon, Woon-Ha;Lee, Tae-Hee;Lee, Jong-Kyu
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.3
    • /
    • pp.280-284
    • /
    • 2003
  • The field application of acoustic emission(AE) testing for brand-new metal pressure vessel were performed. We will introduce the test procedure for acoustic emission test such as instrument check distance between sensors, sensor location, whole system calibration, pressurization sequence, noise reduction and evaluation. The data of acoustic emission test contain many noise signal, these noise can be reduced by time filtering which based on the description of observation during AE test.

Acoustic Valve Leak Diagnosis and Monitoring System for Power Plant Valves (발전용 밸브누설 음향 진단 및 감시시스템)

  • Lee, Sang-Guk
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.425-430
    • /
    • 2008
  • To verify the system performance of portable AE leak diagnosis system which can measure with moving conditions, AE activities such as RMS voltage level, AE signal trend, leak rate degree according to AE database, FFT spectrum were measured during operation on total 11 valves of the secondary system in nuclear power plant. AE activities were recorded and analyzed from various operating conditions including different temperature, type of valve, pressure difference, valve size and fluid. The results of this field study are utilized to select the type of sensors, the frequency band for filtering and thereby to improve the signal-to-noise ratio for diagnosis for diagnosis or monitoring of valves in operation. As the final result of application study above, portable type leak diagnosis system by AE was developed. The outcome of the study can be definitely applied as a means of the diagnosis or monitoring system for energy saving and prevention of accident for power plant valve. The purpose of this study is to verify availability of the acoustic emission in-situ monitoring method to the internal leak and operating conditions of the major valves at nuclear power plants. In this study, acoustic emission tests are performed when the pressurized temperature water and steam flowed through glove valve(main steam dump valve) and check valve(main steam outlet pump check valve) on the normal size of 12 and 18 ". The valve internal leak monitoring system for practical field was designed. The acoustic emission method was applied to the valves at the site, and the background noise was measured for the abnormal plant condition. To improve the reliability, a judgment of leak on the system was used various factors which are AE parameters, trend analysis, frequency analysis, voltage analysis and amplitude analysis of acoustic signal emitted from the valve operating condition internal leak.

  • PDF

Life Prediction and AE Evaluation of Pure or Cyclic Creep for Power Plant Materials ; Pure Creep and AE Evaluation (전력용 강재의 정적.동적 크리프의 상관성과 예측 및 AE평가(1); 정적 크리프와 AE평가)

  • 오세규;장홍근;송정근
    • Journal of Ocean Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.76-84
    • /
    • 1998
  • In this 1st report, the relationship between pure creep properties and initial strain was studied and also its acoustic emission test was performed during creep test at 500, 600 and $700^{\circ}C$. And the applicability of the acoustic emission technique was investigated to analyze the quantitive relationship between all the pure properties (creep strength, creep repture time or creep life, steady state creep rate, total creep rate, creep strain, total creep strain, etc.) and the initial strains as well as to analyze AE properties during the pure creep loading condition.

  • PDF

An Experimental Study on the Friction of CrN Coated Specimen using the Acoustic Emission Sensor (AE 센서를 이용한 CrN 코팅의 마찰특성에 관한 연구)

  • 조정우;이영제
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.06a
    • /
    • pp.215-219
    • /
    • 1999
  • One of the innovative physical methods that provide insight into the basic processes which determine friction and wear behavior of coated machine tools is acoustic emission (AE). In this study, an investigation of the relation between AE and friction signal produced during repeated sliding test is presented. The material of test specimens is CrN coated 0.2% plain carbon steel with 1 Um thickness. The obtained results demonstrate that AE signal is very related with friction, and AE signal is more sensitive than friction when CrN coated film come off the substrate.

  • PDF

DETECTING OF SCUFFING USING ACOUSTIC EMISSION

  • Kim, J.H.;Kim, T.W.;Cho, Y.J.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.191-192
    • /
    • 2002
  • The scuffing failure is a critical problem in modern machine components, especially for the requirement of high efficiency and small size. In this study. scuffing experiments are conducted using Acoustic Emission(AE) measurement by an indirect sensing approach to detect scuffing failure. Using AE signals we con get and indication about the state of the friction processes, about the quality of solid and liquid layers on the contacting surface in real time. The FFT(Fast Fourier Transform)analyses of the AE signal are used to understand the interfacial interaction and the relationship between the AE signal and the state of contact is presented.

  • PDF

A Study on the Application of Acoustic Emission Measurement for the In-process Detection of Milling Tools' Wear and Chipping (밀링 공구마멸과 치핑의 검출을 위한 음향방출 이용에 관한 연구)

  • Yoon, J.H.;Kang, M.S.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.11 no.1
    • /
    • pp.31-37
    • /
    • 1991
  • Acoustic emission(AE) signals detected during metal cutting were applied as the experimental test to sensing tool wear and chipping on the NC vertical milling machine. The in-process detection of cutting tool wear including chipping, cracking and fracture has been investigated by means of AE in spite of vibration or noise through intermittent metal cutting, then the following results were obtained 1) When the tool wear is increased suddenly, or the amplitude of AE signals changes largely, it indicates chipping or breaking of the insert tip. 2) It was confirmed that AE signal is highly sensitive to the cutting speed and tool wear. 3) At the early period of cutting, the wear were large and RMS value increased highly by the influence of minute chipping and cracking, etc. Therefore, the above situations should be considered for the time when the tool would be changed.

  • PDF

Machining condition monitoring for micro-grooving on mold steel using fuzzy clustering method (퍼지 클러스터링을 이용한 금형강에 미세 그루브 가공시 가공상태 모니터링)

  • 이은상;곽철훈;김남훈
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.11
    • /
    • pp.47-54
    • /
    • 2003
  • Research during the past several years has established the effectiveness of acoustic emission (AE)-based sensing methodologies for machine condition analysis and process. AE has been proposed and evaluated for a variety of sensing tasks as well as for use as a technique for quantitative studies of manufacturing process. STD11 has been known as difficult-to-cut materials. The micro-grooving machine was developed for this study and the experiments were performed using CBN blade for machining STD11. Evaluating the machining conditions, frequency spectrum analysis of acoustic emission (AE) signals according to each conditions were applied. Fuzzy clustering method for associating the preprocessor outputs with the appropriate decisions was followed by frequency spectrum analysis. FFT is used to decompose AE signal into different frequency bands in time domain, the root mean square (RMS) values extracted from the decomposed signal of each frequency band were used as features.

Development of acoustic emission sensor using piezoelectric elements and monitoring system for polishing process (압전소자를 이용한 AE센서 및 연마공정 감시장치 개발)

  • 김정돈;김성렬;김화영;안중환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.560-565
    • /
    • 2001
  • Recently, machining process monitoring technique based on AE(acoustic emission) signal is used widely and becomes very important technique in machining process for improving the efficiency and the confidence of the systems. In this study, we fabricated a cheap acoustic emission sensor and monitoring system and estimated the properties of them through comparing with commercial AE sensor systems. In addition, we evaluated the performance of the fabricated sensor in polishing process. Futhermore, we are scheduled to develop the multi-point polishing process monitoring system through fabrication of the more AE sensors and complement of the monitoring system.

  • PDF

Fiber Orientation Effects on the Fracture Process and Acoustic Emission Characteristics of Composite Laminates

  • Woo, Sung-Choong;Kim, Jung-Heun;Choi, Nak-Sam
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.6
    • /
    • pp.451-458
    • /
    • 2005
  • The effects of fiber orientation on acoustic emission(AE) characteristics have been studied for various composite laminates. Reflection and transmission optical microscopy were used to investigate the damage zone of specimens. AE signals were classified through short time Fourier transform(STFT) as different types: AE signals with a high intensity and high frequency band were due to fiber fracture, while weak AE signals with a low frequency band were due to matrix cracking and/or interfacial cracking. Characteristic feature in the rate of hit-events having high amplitudes showed a procedure of fiber breakages, which expressed the characteristic fracture processes of notched fiber-reinforced plastics with different fiber orientations. As a consequence, the behavior of fracture in the continuous composite laminates could be monitored through nondestructive evaluation(NDE) using the AE technique.