Abstract
Research during the past several years has established the effectiveness of acoustic emission (AE)-based sensing methodologies for machine condition analysis and process. AE has been proposed and evaluated for a variety of sensing tasks as well as for use as a technique for quantitative studies of manufacturing process. STD11 has been known as difficult-to-cut materials. The micro-grooving machine was developed for this study and the experiments were performed using CBN blade for machining STD11. Evaluating the machining conditions, frequency spectrum analysis of acoustic emission (AE) signals according to each conditions were applied. Fuzzy clustering method for associating the preprocessor outputs with the appropriate decisions was followed by frequency spectrum analysis. FFT is used to decompose AE signal into different frequency bands in time domain, the root mean square (RMS) values extracted from the decomposed signal of each frequency band were used as features.