• 제목/요약/키워드: ADAS Development

검색결과 48건 처리시간 0.032초

3D 자동차 시뮬레이터 기반 상호작용형 ADAS 개발 및 검증 프레임워크 (Interactive ADAS development and verification framework based on 3D car simulator)

  • 조든솔;정세열;김형수;이승기;김원태
    • 전기전자학회논문지
    • /
    • 제22권4호
    • /
    • pp.970-977
    • /
    • 2018
  • 자율 주행 차량은 주변 환경의 정보를 수집하는 센서, 측정된 데이터를 판단하는 제어 모듈로 구성된 첨단 운전자 지원 시스템(ADAS)을 기반하고 있다. 최근에 자율주행 기술에 대한 관심이 증가함에 따라 ADAS 입문 개발자들 및 학습자들을 위한 손쉬운 개발프레임워크가 필요하다. 그러나, 기존 개발 및 검증 방식은 고성능 자동차 시뮬레이터를 기반하기 때문에 검증 방법의 복잡성 및 고비용 등의 단점이 있다. 또한, 대부분의 방식은 시뮬레이터로부터 ADAS에서 필요로 하는 센싱 데이터를 직접 제공하지 않으므로 검증 신뢰성의 한계가 있다. 본 논문에서는 기존 방식들의 문제점들을 극복하는 3D 자동차 시뮬레이터를 활용한 상호작용형 ADAS 개발 및 검증 프레임워크를 제시한다. 영상인지 기반의 인공지능을 적용한 ADAS를 3D 자동차 시뮬레이터에서의 가상센서로 구현하고, 실제 시나리오에 자율주행 검증을 진행하였다.

차량용 브레이크 제동력 평가 다이나모미터 개발 (Braking Force Test Evaluation Dynamometer Development of Vehicle)

  • 권병헌;윤필환;이선봉
    • 한국산학기술학회논문지
    • /
    • 제20권5호
    • /
    • pp.56-65
    • /
    • 2019
  • 최근 자동차는 안전성, 편리성, 친환경 등의 목적으로 개발되고 있다. 특히, 자동차 안전성에 대한 인식이 중요하게 바뀌고 있다. 이에 따라, ADAS 개발로 인한 안전 시스템들이 등장하였다. 그러나 ADAS의 개발과 시험 평가를 통해 양산 되는 기간은 상당히 오래 걸린다. 따라서 본 논문에서는 ADAS 개발과 시험 평가에 필요한 기간을 단축시키기 위해 브레이크 다이나모미터를 개발 하였다. 또한 개발한 브레이크 다이나모미터는 국제 표준인 JIS D-0210을 만족하며, ADAS의 모드별로 사용자가 시험 조건과 시험 방법을 선택 하여 제동력을 평가할 수 있다. 그리고 개발하는 브레이크 다이나모미터의 신뢰성 검증을 위해 선행 연구에서 제안한 ACC, LKAS, AEB의 시나리오를 사용하였다. 개발한 브레이크 다이나모미터는 시험값과 선행 연구를 통해 제안된 ADAS 모드별 이론식에 의한 계산값을 비교하여 신뢰성을 검증하였다. 또한, 향후에는 ADAS의 실차시험이 불가능한 환경에서 ADAS 모드별 브레이크 부품의 성능 평가가 가능할 것으로 기대 된다.

머신러닝/ADAS 정보 활용 충돌안전 제어로직 개발 (Development of Collision Safety Control Logic using ADAS information and Machine Learning)

  • 박형욱;송수성;신장호;한광철;최세경;하헌석;윤성로
    • 자동차안전학회지
    • /
    • 제14권3호
    • /
    • pp.60-64
    • /
    • 2022
  • In the automotive industry, the development of automobiles to meet safety requirements is becoming increasingly complex. This is because quality evaluation agencies in each country are continually strengthening new safety standards for vehicles. Among these various requirements, collision safety must be satisfied by controlling airbags, seat belts, etc., and can be defined as post-crash safety. Apart from this safety system, the Advanced Driver Assistance Systems (ADAS) use advanced detection sensors, GPS, communication, and video equipment to detect the hazard and notify driver before the collision. However, research to improve passenger safety in case of an accident by using the sensor of active safety represented by ADAS in the existing passive safety is limited to the level that utilizes the sudden braking level of the FCA (Forward Collision-avoidance Assist) system. Therefore, this study aims to develop logic that can improve passenger protection in case of an accident by using ADAS information and driving information secured before a collision. The proposed logic was constructed based on LSTM deep learning techniques and trained using crash test data.

Personal Driving Style based ADAS Customization using Machine Learning for Public Driving Safety

  • Giyoung Hwang;Dongjun Jung;Yunyeong Goh;Jong-Moon Chung
    • 인터넷정보학회논문지
    • /
    • 제24권1호
    • /
    • pp.39-47
    • /
    • 2023
  • The development of autonomous driving and Advanced Driver Assistance System (ADAS) technology has grown rapidly in recent years. As most traffic accidents occur due to human error, self-driving vehicles can drastically reduce the number of accidents and crashes that occur on the roads today. Obviously, technical advancements in autonomous driving can lead to improved public driving safety. However, due to the current limitations in technology and lack of public trust in self-driving cars (and drones), the actual use of Autonomous Vehicles (AVs) is still significantly low. According to prior studies, people's acceptance of an AV is mainly determined by trust. It is proven that people still feel much more comfortable in personalized ADAS, designed with the way people drive. Based on such needs, a new attempt for a customized ADAS considering each driver's driving style is proposed in this paper. Each driver's behavior is divided into two categories: assertive and defensive. In this paper, a novel customized ADAS algorithm with high classification accuracy is designed, which divides each driver based on their driving style. Each driver's driving data is collected and simulated using CARLA, which is an open-source autonomous driving simulator. In addition, Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) machine learning algorithms are used to optimize the ADAS parameters. The proposed scheme results in a high classification accuracy of time series driving data. Furthermore, among the vast amount of CARLA-based feature data extracted from the drivers, distinguishable driving features are collected selectively using Support Vector Machine (SVM) technology by comparing the amount of influence on the classification of the two categories. Therefore, by extracting distinguishable features and eliminating outliers using SVM, the classification accuracy is significantly improved. Based on this classification, the ADAS sensors can be made more sensitive for the case of assertive drivers, enabling more advanced driving safety support. The proposed technology of this paper is especially important because currently, the state-of-the-art level of autonomous driving is at level 3 (based on the SAE International driving automation standards), which requires advanced functions that can assist drivers using ADAS technology.

종방향 능동안전장치의 평가기준 연구 (Study for Evaluation Standard of Longitudinal Active Safety System)

  • 장현익;용부중;조성우;최인성;민경찬;김규현
    • 자동차안전학회지
    • /
    • 제4권1호
    • /
    • pp.12-17
    • /
    • 2012
  • ADAS(Advanced Driver Assistance System) which is developed for alleviating driver's load has become improved with extending it's role. Previously, ADAS offered simple function just to make driver's convenience. However, nowadays ADAS also acts as Active Safety system which is made to release and/or prevent accidents. Longitudinal control system, as one of major parts of Active Safety System, is assessed as doing direct effect on avoiding accidents. Therefore, many countries such as Europe and America has pushed longitudinal control system as a government-wide project. In this paper, it covers the result of evaluation system and vehicle evaluation for development study in FCW, ACC and AEB.

AEB의 V2V 안전성 평가 방법에 관한 연구 (A Study on the V2V Safety Evaluation Method of AEB)

  • 권병헌;이선봉
    • 자동차안전학회지
    • /
    • 제11권1호
    • /
    • pp.7-16
    • /
    • 2019
  • There are trying to reduce damage from automobile accident in many countries. In many automobile companies, there have been active study on development of ADAS (Advanced Driver Assistance Systems) for commercialization, in order to reduce damage from automobile accident. ADAS is the system providing convenience and safeness for drivers. Generally, ADAS is composed of ACC (Adaptive Cruise Control), LKAS (Lane Keeping Assist System), and AEB (Autonomous Emergency Braking). AEB of the ADAS, it is an autonomous emergency braking system and it senses potential collide and avoids or degrades it. Therefore AEB plays a significant role in reducing automobile accident rate. However, AEB safety evaluation method is not established not yet. For this reason, this study suggests safety evaluation scenarios with adding cut-in, sensor malfunctioning scenario that scenario domestic street conditions considered as well as original standard AEB scenario of Euro NCAP for establishment of safety evaluation method of AEB. And verifying validity of suggested scenario by comparing the calculated values of the theoretical formulas presented in the previous study with results of the actual vehicle test.

V2X Technology Trends for Next-Generation Mobility

  • Kim, Young-Hak
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제12권1호
    • /
    • pp.7-13
    • /
    • 2020
  • We describes V2X technology, a connectivity-based recognition technology that is attracting attention as a key technology for implementing autonomous driving technology, and autonomous communication modules that implement ADAS technology, a sensor-based recognition technology. It also explains the trends in V2X technology standardization centered on IEEE 802.11p, which is a WAVE technology standard based on Wi-Fi/DSRC. Finally, we will discuss the market growth trend of V2X communication modules in the United States, the leading V2X technology module, and the development of technology development trends of major domestic and international companies that are leading the global technology market related to V2X communication modules. V2X and ADAS technologies will be the biggest influence on automotive purchasing decisions. In recent years, V2I mandates have been promoted beyond V2V, mainly in developed countries such as the United States. The related industry needs to focus on the development of information transmission network technology that can support high frequency high efficiency(transmission rate) and sophisticated positioning accuracy beyond conventional vehicle communication.

국내도로 환경에서의 HDA 시험평가 방법에 관한 연구 (A Study on Evaluation Method of the HDA Test in Domestic Road Environment)

  • 배건환;김봉주;이선봉
    • 자동차안전학회지
    • /
    • 제11권4호
    • /
    • pp.39-49
    • /
    • 2019
  • Autonomous vehicle is a car which drives itself without any human interaction. SAE provides technical definitions for autonomous and international standards for test evaluation. Accordingly, automobile industry is actively researching development and evaluation of various ADAS (Advanced Driver Assistance Systems), : representative technology of autonomous technology. Recently, ADAS is in the commercialization level such as ACC, LKAS, AEB, and HDA etc. And it also has issues about safety evaluation. The purpose of HDA in ADAS is reduced the driving load on highway. It has a function which can maintain lane keeping and control distance from forward vehicle. This function is evaluated to be useful for accident prevention. Therefore, this paper proposes the safety evaluation scenario of HDA, considering the domestic highway design criteria and the situation that may arise on the actual highway. We compared and analyzed the data acquired through simulation and actual vehicle test. And verified the reliability of the proposed safety evaluation scenario. The verified result is expected safety evaluation of HDA is possible even under the bad condition, which cannot be tested.

Technology Acceptance Modeling based on User Experience for Autonomous Vehicles

  • Cho, Yujun;Park, Jaekyu;Park, Sungjun;Jung, Eui S.
    • 대한인간공학회지
    • /
    • 제36권2호
    • /
    • pp.87-108
    • /
    • 2017
  • Objective: The purpose of this study was to precede the acceptance study based on automation steps and user experience that was lacked in the past study on the core technology of autonomous vehicle, ADAS. The first objective was to construct the acceptance model of ADAS technology that is the core technology, and draw factors that affect behavioral intention through user experience-based evaluation by applying driving simulator. The second one was to see the change of factors on automation step of autonomous vehicle through the UX/UA score. Background: The number of vehicles with the introduction of ADAS is increasing, and it caused change of interaction between vehicle and driver as automation is being developed on the particular drive factor. For this reason, it is becoming important to study the technology acceptance on how driver can actively accept giving up some parts of automated drive operation and handing over the authority to vehicle. Method: We organized the study model and items through literature investigation and the scenario according to the 4 stages of automation of autonomous vehicle, and preceded acceptance assessment using driving simulator. Total 68 men and woman were participated in this experiment. Results: We drew results of Performance Expectancy (PE), Social Influence (SI), Perceived Safety (PS), Anxiety (AX), Trust (T) and Affective Satisfaction (AS) as the factors that affect Behavioral Intention (BI). Also the drawn factors shows that UX/UA score has a significant difference statistically according to the automation steps of autonomous vehicle, and UX/UA tends to move up until the stage 2 of automation, and at stage 3 it goes down to the lowest level, and it increases a little or stays steady at stage 4. Conclusion and Application: First, we presented the acceptance model of ADAS that is the core technology of autonomous vehicle, and it could be the basis of the future acceptance study of the ADAS technology as it verifies through user experience-based assessment using driving simulator. Second, it could be helpful to the appropriate ADAS development in the future as drawing the change of factors and predicting the acceptance level according to the automation stages of autonomous vehicle through UX/UA score, and it could also grasp and avoid the problem that affect the acceptance level. It is possible to use these study results as tools to test validity of function before ADAS offering company launches the products. Also it will help to prevent the problems that could be caused when applying the autonomous vehicle technology, and to establish technology that is easily acceptable for drivers, so it will improve safety and convenience of drivers.

첨단 운전자 보조시스템 장착 차량의 브레이크 제동력 분배에 관한 연구 (A Study on the Braking Force Distribution of ADAS Vehicle)

  • 윤필환;이선봉
    • 한국산학기술학회논문지
    • /
    • 제19권11호
    • /
    • pp.550-560
    • /
    • 2018
  • 세계 각국 정부는 자동차 안전성 향상을 위한 첨단 운전자 보조시스템(ADAS, Advanced Driver Assistance System)에 대해 연구 지원 및 정책을 시행하고 있다. 이러한 노력으로 교통사고 사상자수는 지속적으로 감소하고 있다. 그러나 국내 교통사고 사상자 수는 OECD 35개국 가운데 최하위이며, 사망률은 31위를 기록하고 있다. 교통사고는 사고의 원인에 따라 차대차(V2V, Vehicle to Vehicle), 차대사람(V2P, Vehicle to Pedestrian), 차량단독과 같은 세 가지 유형으로 분류된다. 사고원인은 운전자의 인지, 판단, 조작 등의 실수로 인하여 발생한다. 이러한 이유로 사고 감소 및 예방을 위해 제안된 것이 ADAS 이다. 그리고 현재 자동차 산업계에서는 각종 안전장치를 개발하고 있으나, 성능검사를 위한 실차시험은 제한적이며 위험성을 동반하고 있다. 따라서 본 연구에서는, 제한적인 실차시험의 극복을 위해 브레이크 제동력 평가 기술에 관한 시험평가 방법의 국제표준을 검토하고, 제동력에 관한 이론식과 제어 알고리즘을 제안한 뒤 이를 실차시험으로 비교하여 타당성을 검증하였다. 이 결과는 ADAS의 기능에 따른 제동력을 확인 할 수 있으며, 개발단계에서 제안한 이론식으로 경향성 예측이 가능해져 실차시험의 위험성을 감소시킬 수 있을 것으로 판단된다.