• Title/Summary/Keyword: ADALINE neural network

Search Result 16, Processing Time 0.017 seconds

Fuzzy Control Method By Automatic Scaling Factor Tuning (자동 양자이득 조정에 의한 퍼지 제어방식)

  • 강성호;임중규;엄기환
    • Proceedings of the IEEK Conference
    • /
    • 2003.07c
    • /
    • pp.2807-2810
    • /
    • 2003
  • In this paper, we propose a fuzzy control method for improving the control performance by automatically tuning the scaling factor. The proposed method is that automatically tune the input scaling factor and the output scaling factor of fuzzy logic system through neural network. Used neural network is ADALINE (ADAptive Linear NEron) neural network with delayed input. ADALINE neural network has simple construct, superior learning capacity and small computation time. In order to verify the effectiveness of the proposed control method, we performed simulation. The results showed that the proposed control method improves considerably on the environment of the disturbance.

  • PDF

ADALINE Structure Using Fuzzy-Backpropagation Algorithm (퍼지-역전파 알고리즘을 이용한 ADALINE 구조)

  • 강성호;임중규;서원호;이현관;엄기환
    • Proceedings of the IEEK Conference
    • /
    • 2001.06c
    • /
    • pp.189-192
    • /
    • 2001
  • In this paper, we propose a ADALINE controller using fuzzy-backpropagation algorithm to adjust weight. In the proposed ADALINE controller, using fuzzy algorithm for traning neural network, controller make use of ADALINE due to simple and computing efficiency. This controller includes adaptive learning rate to accelerate teaming. It applies to servo-motor as an controlled process. And then it take a simulation for the position control, so the verify the usefulness of the proposed ADALINE controller.

  • PDF

Learning Algorithm using a LVQ and ADALINE (LVQ와 ADALINE을 이용한 학습 알고리듬)

  • 윤석환;민준영;신용백
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.19 no.39
    • /
    • pp.47-61
    • /
    • 1996
  • We propose a parallel neural network model in which patterns are clustered and patterns in a cluster are studied in a parallel neural network. The learning algorithm used in this paper is based on LVQ algorithm of Kohonen(1990) for clustering and ADALINE(Adaptive Linear Neuron) network of Widrow and Hoff(1990) for parallel learning. The proposed algorithm consists of two parts. First, N patterns to be learned are categorized into C clusters by LVQ clustering algorithm. Second, C patterns that was selected from each cluster of C are learned as input pattern of ADALINE(Adaptive Linear Neuron). Data used in this paper consists of 250 patterns of ASCII characters normalized into $8\times16$ and 1124. The proposed algorithm consists of two parts. First, N patterns to be learned are categorized into C clusters by LVQ clustering algorithm. Second, C patterns that was selected from each cluster of C are learned as input pattern of ADALINE(Adaptive Linear Neuron). Data used in this paper consists 250 patterns of ASCII characters normalized into $8\times16$ and 1124 samples acquired from signals generated from 9 car models that passed Inductive Loop Detector(ILD) at 10 points. In ASCII character experiment, 191(179) out of 250 patterns are recognized with 3%(5%) noise and with 1124 car model data. 807 car models were recognized showing 71.8% recognition ratio. This result is 10.2% improvement over backpropagation algorithm.

  • PDF

Learning Method of the ADALINE Using the Fuzzy System (퍼지 시스템을 이용한 ADALINE의 학습 방식)

  • 정경권;김주웅;정성부;엄기환
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.40 no.1
    • /
    • pp.10-18
    • /
    • 2003
  • In this paper, we proposed a learning algorithm for the ADALINE network. The proposed algorithm exploits fuzzy system for automatic tuning of the weight parameters of the ADALINE network. The inputs of the fuzzy system are error and change of error, and the output is the weight variation. We used different scaling factor for each weights. In order to verify the effectiveness of the proposed algorithm, we peformed the simulation and experimentation for the cases of the noise cancellation and the inverted pendulum control. The results show that the proposed algorithm does not need the learning rate and improves 4he performance compared to the Widrow-Hoff delta rule for ADALINE.

ADALINE Controller Using Fuzzy-Backpropagation Algorithm (퍼지-역전파 알고리즘을 이용한 ADALINE 제어기)

  • 강성호;정성부;김주웅;엄기환
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2001.05a
    • /
    • pp.684-687
    • /
    • 2001
  • In this paper, we propose a ADALINE controller using fuzzy-backpropagation algorithm to adjust weight. In the proposed ADALINE controller, using fuzzy algorithm for traning neural network, controller make use of ADALINE due to simple and computing efficiency. And then it applies to servo-motor as an controlled process. And then it take a simulation for the position control, so the verify the usefulness of the proposed ADALINE controller.

  • PDF

Harmonic Elimination and Reactive Power Compensation with a Novel Control Algorithm based Active Power Filter

  • Garanayak, Priyabrat;Panda, Gayadhar
    • Journal of Power Electronics
    • /
    • v.15 no.6
    • /
    • pp.1619-1627
    • /
    • 2015
  • This paper presents a power system harmonic elimination using the mixed adaptive linear neural network and variable step-size leaky least mean square (ADALINE-VSSLLMS) control algorithm based active power filter (APF). The weight vector of ADALINE along with the variable step-size parameter and leakage coefficient of the VSSLLMS algorithm are automatically adjusted to eliminate harmonics from the distorted load current. For all iteration, the VSSLLMS algorithm selects a new rate of convergence for searching and runs the computations. The adopted shunt-hybrid APF (SHAPF) consists of an APF and a series of 7th tuned passive filter connected to each phase. The performance of the proposed ADALINE-VSSLLMS control algorithm employed for SHAPF is analyzed through a simulation in a MATLAB/Simulink environment. Experimental results of a real-time prototype validate the efficacy of the proposed control algorithm.

Adaline-Based Control of Capacitor Supported DVR for Distribution System

  • Singh, Bhim;Jayaprakash, P.;Kothari, D.P.
    • Journal of Power Electronics
    • /
    • v.9 no.3
    • /
    • pp.386-395
    • /
    • 2009
  • In this paper, a new control algorithm for the dynamic voltage restorer (DVR) is proposed to regulate the load terminal voltage during various power quality problems that include sag, swell, harmonics and unbalance in the voltage at the point of common coupling (PCC). The proposed control strategy is an Adaline (Adaptive linear element) Artificial Neural Network (ANN) and is used to control a capacitor supported DVR for power quality improvement. A capacitor supported DVR does not need any active power during steady state because the voltage injected is in quadrature with the feeder current. The control of the DVR is implemented through derived reference load terminal voltages. The proposed control strategy is validated through extensive simulation studies using the MATLAB software with its Simulink and SimPower System (SPS) toolboxes. The DVR is found suitable to support its dc bus voltage through the control under various disturbances.

Design and Implementation of Educational Decision Support System Model

  • Shin, Hyun-Kyung
    • Journal of The Korean Association of Information Education
    • /
    • v.9 no.2
    • /
    • pp.167-176
    • /
    • 2005
  • It has been an important agenda to acquire effective decision making procedure for various issues occurred in education area. As an example, when it comes for the ministry of education to make a decision on such an issue that proper investment, to enhance information of education area, in national wide elementary schools, an effective decision making procedure will aid to establish right way of investment. Currently, the questionnaires gathered from school teachers or the related professional consultants are the only resources in order for making such a critical and important decision. Recently, however, educational, medical, and financial industries are looking forward the best decision making method integrated with rapidly upgraded modern IT technologies using the various resources and tools which they already possess. With this subject in mind, in this paper we present a generic decision making model applying ADALINE neural network. The model can be easily adapted to various problems arising in education area. We proved the model through simulations with realistic sample data.

  • PDF

Improved ADALINE Harmonics Extraction Algorithm for Boosting Performance of Photovoltaic Shunt Active Power Filter under Dynamic Operations

  • Mohd Zainuri, Muhammad Ammirrul Atiqi;Radzi, Mohd Amran Mohd;Soh, Azura Che;Mariun, Norman;Rahim, Nasrudin Abd.
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.6
    • /
    • pp.1714-1728
    • /
    • 2016
  • This paper presents improved harmonics extraction based on Adaptive Linear Neuron (ADALINE) algorithm for single phase photovoltaic (PV) shunt active power filter (SAPF). The proposed algorithm, named later as Improved ADALINE, contributes to better performance by removing cosine factor and sum of element that are considered as unnecessary features inside the existing algorithm, known as Modified Widrow-Hoff (W-H) ADALINE. A new updating technique, named as Fundamental Active Current, is introduced to replace the role of the weight factor inside the previous updating technique. For evaluation and comparison purposes, both proposed and existing algorithms have been developed. The PV SAPF with both algorithms was simulated in MATLAB-Simulink respectively, with and without operation or connection of PV. For hardware implementation, laboratory prototype has been developed and the proposed algorithm was programmed in TMS320F28335 DSP board. Steady state operation and three critical dynamic operations, which involve change of nonlinear loads, off-on operation between PV and SAPF, and change of irradiances, were carried out for performance evaluation. From the results and analysis, the Improved ADALINE algorithm shows the best performances with low total harmonic distortion, fast response time and high source power reduction. It performs well in both steady state and dynamic operations as compared to the Modified W-H ADALINE algorithm.

Dynamic visual servo control of robotic manipulators using neural networks (신경 회로망을 이용한 로보트의 동력학적 시각 서보 제어)

  • 박재석;오세영
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.1012-1016
    • /
    • 1991
  • An effective visual servo control system for robotic manipulators based on neural networks is proposed. For this control system, firstly, one neural network is used to learn the mapping relationship between the robot's joint space and the video image space. However, in the proposed control scheme, this network is not used in itself, but its first and second derivatives are used to generate servo commands for the robot. Secondly, an adaptive Adaline network is used to identify the dynamics of the robot and also to generate the proper torque commands. Computer simulation has been performed indicating its superior performance. As far as the authors know, this is the first time attempt of the use of neural networks for a visual servo control of robots that compensates for their changing dynamics.

  • PDF