• Title/Summary/Keyword: ACR팬텀

Search Result 18, Processing Time 0.024 seconds

A study on Broad Quantification Calibration to various isotopes for Quantitative Analysis and its SUVs assessment in SPECT/CT (SPECT/CT 장비에서 정량분석을 위한 핵종 별 Broad Quantification Calibration 시행 및 SUV 평가를 위한 팬텀 실험에 관한 연구)

  • Hyun Soo, Ko;Jae Min, Choi;Soon Ki, Park
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.26 no.2
    • /
    • pp.20-31
    • /
    • 2022
  • Purpose Broad Quantification Calibration(B.Q.C) is the procedure for Quantitative Analysis to measure Standard Uptake Value(SUV) in SPECT/CT scanner. B.Q.C was performed with Tc-99m, I-123, I-131, Lu-177 respectively and then we acquired the phantom images whether the SUVs were measured accurately. Because there is no standard for SUV test in SPECT, we used ACR Esser PET phantom alternatively. The purpose of this study was to lay the groundwork for Quantitative Analysis with various isotopes in SPECT/CT scanner. Materials and Methods Siemens SPECT/CT Symbia Intevo 16 and Intevo Bold were used for this study. The procedure of B.Q.C has two steps; first is point source Sensitivity Cal. and second is Volume Sensitivity Cal. to calculate Volume Sensitivity Factor(VSF) using cylinder phantom. To verify SUV, we acquired the images with ACR Esser PET phantom and then we measured SUVmean on background and SUVmax on hot vials(25, 16, 12, 8 mm). SPSS was used to analyze the difference in the SUV between Intevo 16 and Intevo Bold by Mann-Whitney test. Results The results of Sensitivity(CPS/MBq) and VSF were in Detector 1, 2 of four isotopes (Intevo 16 D1 sensitivity/D2 sensitivity/VSF and Intevo Bold) 87.7/88.6/1.08, 91.9/91.2/1.07 on Tc-99m, 79.9/81.9/0.98, 89.4/89.4/0.98 on I-123, 124.8/128.9/0.69, 130.9, 126.8/0.71, on I-131, 8.7/8.9/1.02, 9.1/8.9/1.00 on Lu-177 respectively. The results of SUV test with ACR Esser PET phantom were (Intevo 16 BKG SUVmean/25mm SUVmax/16mm/12mm/8mm and Intevo Bold) 1.03/2.95/2.41/1.96/1.84, 1.03/2.91/2.38/1.87/1.82 on Tc-99m, 0.97/2.91/2.33/1.68/1.45, 1.00/2.80/2.23/1.57/1.32 on I-123, 0.96/1.61/1.13/1.02/0.69, 0.94/1.54/1.08/0.98/ 0.66 on I-131, 1.00/6.34/4.67/2.96/2.28, 1.01/6.21/4.49/2.86/2.21 on Lu-177. And there was no statistically significant difference of SUV between Intevo 16 and Intevo Bold(p>0.05). Conclusion Only Qualitative Analysis was possible with gamma camera in the past. On the other hand, it's possible to acquire not only anatomic localization, 3D tomography but also Quantitative Analysis with SUV measurements in SPECT/CT scanner. We could lay the groundwork for Quantitative Analysis with various isotopes; Tc-99m, I-123, I-131, Lu-177 by carrying out B.Q.C and could verify the SUV measurement with ACR phantom. It needs periodic calibration to maintain for precision of Quantitative evaluation. As a result, we can provide Quantitative Analysis on follow up scan with the SPECT/CT exams and evaluate the therapeutic response in theranosis.

Usefulness of Median Modified Wiener Filter Algorithm for Noise Reduction in Liver Cirrhosis Ultrasound Image (간경변 초음파 영상에서의 노이즈 제거를 위한 Median Modified Wiener Filter 알고리즘의 유용성)

  • Seung-Yeon Kim;Soo-Min Kang;Youngjin Lee
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.6
    • /
    • pp.911-917
    • /
    • 2023
  • The method of observing nodular changes on the liver surface using clinical ultrasonography is useful for diagnosing cirrhosis. However, the speckle noise that inevitably occurs in ultrasound images makes it difficult to identify changes in the liver surface and echo patterns, which has a negative impact on the diagnosis of cirrhosis. The purpose of this study is to model the median modified Wiener filter (MMWF), which can efficiently reduce noise in cirrhotic ultrasound images, and confirm its applicability. Ultrasound images were acquired using an ACR phantom and an actual cirrhotic patient, and the proposed MMWF algorithm and conventional noise reduction algorithm were applied to each image. Coefficient of variation (COV) and edge rise distance (ERD) were used as quantitative image quality evaluation factors for the acquired ultrasound images. We confirmed that the MMWF algorithm improved both COV and ERD values compared to the conventional noise reduction algorithm in both ACR phantom and real ultrasound images of cirrhotic patients. In conclusion, the proposed MMWF algorithm is expected to contribute to improving the diagnosis rate of cirrhosis patients by reducing the noise level and improving spatial resolution at the same time.

Evaluation of the Applicability of PET/CT Phantom as a 3D Printing Material (PET/CT 팬텀의 3D 프린팅 소재 적용 가능성 평가)

  • Lee, Ju-young;Kim, Ji-Hyeon;Park, Hoon-Hee
    • Journal of radiological science and technology
    • /
    • v.45 no.5
    • /
    • pp.423-431
    • /
    • 2022
  • The purpose of this study is to present objective information in applying 3D printing technology for PET/CT (Positron Emission Tomography/Computed Tomography) performance evaluation and use it as a basic research that can be applied to various purposes in the future. Phantoms were manufactured with step wedge of ABS(Acrylonitrile Butadiene Styrene) and ACR(Acrylic acid) material. The counts for each ROI(Region of Interest) were analyzed through image acquisition in PET/CT. And the variation rate of counts and CNR(Contrast Noise Ratio) was evaluated. In the counts analysis, the effect of thickness occurred. In addition, in the variation rate analysis, the thickness setting of steps wedge 4 to 5 levels should be considered first. These results minimize quantitative and qualitative changes in the phantom manufactured based on 3D printing, and enable more stable PET/CT performance evaluation. Based on 3D printing in PET/CT, various phantoms are expected to be produced in the future. If the characteristics of each material are considered and applied through the basic research such as this research, the result of the phantom manufactured through 3D printing can be more meaningful and will be used in a wide range.

Comparison with 1.5Tesla and 3.0Tesla of Acoustic Noise Spectrum of DWI MR Pulse Sequence (1.5Tesla and 3.0Tesla에서 관류 MR의 소리 스펙트럼 분석)

  • Kweon, Dae Cheol;Choi, Jiwon
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.4
    • /
    • pp.491-496
    • /
    • 2018
  • The purpose of this study is to analyze the noise spectra in DWI (diffusion-weighted imaging) pulse sequences of 1.5 Tesla and 3.0 Tesla MRI, The ACR (American College of Radiology) phantom and noise spectrum were analyzed by FFT (fast Fourier transform) and TFFT (temporal frequency analysis) using WavePad sound editor version 8.13 (NCH software, Greenwood Village, CO, USA). Noise spectra, FFT and TFFT were analyzed for laboratory 1.5Tesla and 3.0Tesla DWI MR pulse sequences. The noise threshold of the frequency amplitude in the FFT and TFFT at 3.0Tesla compared to 1.5Tesla was between 1.5Tesla and -6 dB, and between 3.0Tesla and 0 dB, the DWI pulse sequence for the patient's noise reduction was appropriately MR examination needs to be applied.

The Influence of Iteration and Subset on True X Method in F-18-FPCIT Brain Imaging (F-18-FPCIP 뇌 영상에서 True-X 재구성 기법을 기반으로 했을 때의 Iteration과 Subset의 영향)

  • Choi, Jae-Min;Kim, Kyung-Sik;NamGung, Chang-Kyeong;Nam, Ki-Pyo;Im, Ki-Cheon
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.14 no.1
    • /
    • pp.122-126
    • /
    • 2010
  • Purpose: F-18-FPCIT that shows strong familiarity with DAT located at a neural terminal site offers diagnostic information about DAT density state in the region of the striatum especially Parkinson's disease. In this study, we altered the iteration and subset and measured SUV${\pm}$SD and Contrasts from phantom images which set up to specific iteration and subset. So, we are going to suggest the appropriate range of the iteration and subset. Materials and Methods: This study has been performed with 10 normal volunteers who don't have any history of Parkinson's disease or cerebral disease and Flangeless Esser PET Phantom from Data Spectrum Corporation. $5.3{\pm}0.2$ mCi of F-18-FPCIT was injected to the normal group and PET Phantom was assembled by ACR PET Phantom Instructions and it's actual ratio between hot spheres and background was 2.35 to 1. Brain and Phantom images were acquired after 3 hours from the time of the injection and images were acquired for ten minutes. Basically, SIEMENS Bio graph 40 True-point was used and True-X method was applied for image reconstruction method. The iteration and Subset were set to 2 iterations, 8 subsets, 3 iterations, 16 subsets, 6 iterations, 16 subsets, 8 iterations, 16 subsets and 8 iterations, 21 subsets respectively. To measure SUVs on the brain images, ROIs were drawn on the right Putamen. Also, Coefficient of variance (CV) was calculated to indicate the uniformity at each iteration and subset combinations. On the phantom study, we measured the actual ratio between hot spheres and back ground at each combinations. Same size's ROIs were drawn on the same slide and location. Results: Mean SUVs were 10.60, 12.83, 13.87, 13.98 and 13.5 at each combination. The range of fluctuation by sets were 22.36%, 10.34%, 1.1%, and 4.8% respectively. The range of fluctuation of mean SUV was lowest between 6 iterations 16 subsets and 8 iterations 16 subsets. CV showed 9.07%, 11.46%, 13.56%, 14.91% and 19.47% respectively. This means that the numerical value of the iteration and subset gets higher the image's uniformity gets worse. The range of fluctuation of CV by sets were 2.39, 2.1, 1.35, and 4.56. The range of fluctuation of uniformity was lowest between 6 iterations, 16 subsets and 8 iterations, 16 subsets. In the contrast test, it showed 1.92:1, 2.12:1, 2.10:1, 2.13:1 and 2.11:1 at each iteration and subset combinations. A Setting of 8 iterations and 16 subsets reappeared most close ratio between hot spheres and background. Conclusion: Findings on this study, SUVs and uniformity might be calculated differently caused by variable reconstruction parameters like filter or FWHM. Mean SUV and uniformity showed the lowest range of fluctuation at 6 iterations 16 subsets and 8 iterations 16 subsets. Also, 8 iterations 16 subsets showed the nearest hot sphere to background ratio compared with others. But it can not be concluded that only 6 iterations 16 subsets and 8 iterations 16 subsets can make right images for the clinical diagnosis. There might be more factors that can make better images. For more exact clinical diagnosis through the quantitative analysis of DAT density in the region of striatum we need to secure healthy people's quantitative values.

  • PDF

Image Comparative Evaluation by PET/CT Equipment Using Phantom (팬텀을 활용한 PET/CT 장비 별 영상 비교 평가)

  • Moo-Jin Jeong;Jun-Chul Ham;Yong-Hoon Choi;Young-Kag Bahn;Han-Sang Lim;Jae-Sam Kim
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.28 no.1
    • /
    • pp.71-79
    • /
    • 2024
  • Purpose: This study aims to identify SUV, SNR, spatial resolution, and axial uniformity under the same reconstruction conditions and to find out the differences between equipment models. Materials and Methods: The equipment was GE's Discovery 600, 710, IQ, MI(GE Healthcare, USA), and the Phantom used ACR(American College of Radiology) Flangeless Esser Phantom and PET/SPECT Performance Phantom. The PET/SPECT Performance Phantom injected 18F-FDG at a concentration of 3.8 kBq/mL, and the ACR Flangeless Esser Phantom made the conditions for Hot Spot and Background activity for 4 : 1. Image evaluation was compared and evaluated for SUV, SNR, spatial resolution, and axial uniformity with the same reconstruction that added SharpIR of VPHD. Results: The SUVmax showed a difference up to 4.6% with an average of 2.71, 2.35, 1.89, and 1.43 from Hot Spot 1 to 4, and the SUVmean showed a difference up to 4.7% with 2.06, 1.75, 1.49, and 1.27. There was a difference up to 5% between equipment, and there was no significant difference between both SUVmax and SUVmean. SNR showed a difference up to 0.04 with an average of 0.37, 0.26, 0.18, and 0.11. FWHM showed a difference up to 0.27. Lastly, COV of axial uniformity was up to 0.018. Conclusion: SUV showed differences within 5% between equipment and showed no significant difference. This is considered to be used as basic data that can be used for the development and replacement of equipment because it has the advantage of being able to observe with a large number of equipment.

A Comparative Analysis of Standard Uptake Value Using the Recovery Coefficient Before and After Correcting Partial Volume Effect (부분 체적 효과에서 회복 계수를 이용한 보정 전과 후 SUV의 비교 분석)

  • Ko, Hyun-Soo;Park, Soon-Ki;Choi, Jae-Min;Kim, Jung-Sun;Jung, Woo-Young
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.15 no.1
    • /
    • pp.10-16
    • /
    • 2011
  • Purpose: The partial volume effect occurs because of limit of the spatial resolution. It makes partial loss of intensity and causes SUV to be lower than it should actually be. So the purpose of this study is to calculate recovery coefficient for correcting PVE from phantom study and to compare before and after SUV correction applying to PET/CT examination. Materials and Methods: The flangeless Esser PET phantom consisting of four hot cylinders was used for this study. All of the hot cylinders were filled with FDG solution of 20.72 MBq per 1000 ml, and the phantom background was filled with FDG solution of different concentrations (33.30, 22.20, 16.65 MBq per 6440 ml) to yield H/B ratios of around 4:1, 6:1 and 8:1. Using the Biograph Truepoint 40(SIEMENS, Germany), we applied recovery coefficient method to 30 patients who were diagnosed with lung cancer after PET/CT exam. And then we analyzed and compared SUV before and after correcting partial volume effect. Results: The smaller the diameter of hot cylinder becomes, the more recovery coefficient decreased. When we applied recovery coefficient to clinical patients and compared SUV before and after correcting PVE, before the correction all lesions gave an average max SUV of 7.83. And after the correction, the average max SUV increases to 10.31. The differences in the max SUV between before and after correction were analyzed by paired t test. As a result, there were statistically significant differences (t=7.21, p=0.000). Conclusion: The SUV for quantification should be measured precisely to give consistent information of tumor uptake. But PVE is one of factors that causes SUV to be lower and to be underestimated. We can correct this PVE and calculate corrected SUV using the recovery coefficient from phantom study. And if we apply this correction method to clinical patients, we can finally assess and provide quantitative analysis more accurately.

  • PDF

Invivo Dosimetry for Mammography with and without Lead Apron Using the Glass Dosimeters (유방촬영술에서 유리선량계를 이용한 납치마의 선량차폐 효과 측정)

  • Yu, Su-Jeong;Lim, Sangwook;Ma, Sun Young;Seo, Sun-Youl;Kim, Young-Jae;Kang, Young-Nam;Keum, Ki Chang;Cho, Samju
    • Progress in Medical Physics
    • /
    • v.26 no.2
    • /
    • pp.93-98
    • /
    • 2015
  • The purpose of this study is to see the usefulness of lead apron for critical organs near the breast under examining. For clinical experiment, 30 female volunteers who agreed to their participation in the experiments, were chosen and divided into two groups, 15 in group A and 15 in group B respectively. group A is to see whether each side of breast under mammography affects to other side glandular on the critical organs is same, because it is not allowed to scan the both breast for same person or to scan repeatedly. Group B is to see the effectiveness of lead apron during the mammography of right breast. Glass dosimeters were placed on the thyroid, the contralateral breast, and lower abdomen where near the breast during examining. The average glandular doses on the surface in mammography of the thyroid gland, the contralateral breast, the lower abdomen were 0.0692 mGy, 0.6790 mGy, and 0.0122 mGy, respectively, which was an extremely low level of glandular dose. In group B, as to the thyroid gland, average dose was decreased from 0.0922 mGy to 0.0158 mGy. The average dose of contralateral breast was decreased from 0.8575 mGy to 0.0286 mGy. The average doses of lower abdomen was decrease 0.0150 mGy to 0.0173 mGy. As to the lower abdomen, dose decreased from 0.0150 mGy before the use of an apron down to 0.0173 mGy after the use. As p-value was under 0.05, statistically significant difference was observed between the two groups. Wearing an apron can have the protective effects on the thyroid gland up to 20 times lower than not wearing one. Besides, it is also necessary to protect the other breast during the examination by wearing one.