DOI QR코드

DOI QR Code

Comparison with 1.5Tesla and 3.0Tesla of Acoustic Noise Spectrum of DWI MR Pulse Sequence

1.5Tesla and 3.0Tesla에서 관류 MR의 소리 스펙트럼 분석

  • Kweon, Dae Cheol (Department of Radiological Science, College of Bioecological Health, Shinhan University) ;
  • Choi, Jiwon (Department of Radiological Science, Jeonju University)
  • 권대철 (신한대학교 바이오생태보건대학 방사선학과) ;
  • 최지원 (전주대학교 의과학대학 방사선학과)
  • Received : 2018.07.13
  • Accepted : 2018.08.31
  • Published : 2018.08.31

Abstract

The purpose of this study is to analyze the noise spectra in DWI (diffusion-weighted imaging) pulse sequences of 1.5 Tesla and 3.0 Tesla MRI, The ACR (American College of Radiology) phantom and noise spectrum were analyzed by FFT (fast Fourier transform) and TFFT (temporal frequency analysis) using WavePad sound editor version 8.13 (NCH software, Greenwood Village, CO, USA). Noise spectra, FFT and TFFT were analyzed for laboratory 1.5Tesla and 3.0Tesla DWI MR pulse sequences. The noise threshold of the frequency amplitude in the FFT and TFFT at 3.0Tesla compared to 1.5Tesla was between 1.5Tesla and -6 dB, and between 3.0Tesla and 0 dB, the DWI pulse sequence for the patient's noise reduction was appropriately MR examination needs to be applied.

1.5Tesla와 3.0Tesla의 MRI 검사의 DWI (diffusion-weighted imaging) 펄스시퀀스에서 노이즈 스펙트럼을 분석하여 MRI검사의 기초자료를 제공하여 임상에서 적용하는데 목적이 있다. MRI 검사에서 ACR (American College of Radiology) 팬텀과 노이즈 스펙트럼은 Wavepad sound editor version 8.13 (NCH software, Green wood Village, CO, USA)로 FFT (fast Fourier transform), TFFT (time based fast Fourier transform)를 분석하였다. MR 1.5Tesla와 3.0Tesla의 DWI 펄스 시퀀스에서 검사실에 따른 노이즈 스펙트럼 및 FFT와 TFFT를 분석하였다. 1.5Tesla에 비해 3.0Tesla에서 FFT 및 TFFT에서 주파수 진폭의 노이즈 임계값은 1.5Tesla에서 -6 dB 사이였고, 3.0Tesla에서는 0 dB 사이로 분석되어 환자의 소음감소를 위한 DWI 펄스시퀀스를 환자에게 적절하게 임상에서 적용할 필요가 있다.

Keywords

References

  1. A. Moelker, R. A. Maas, P. M. Pattynama, "Verbal communication in MR environments: effect of MR system acoustic noise on speech understanding," Radiology, Vol. 232, No. 1, pp. 107-113, 2004. https://doi.org/10.1148/radiol.2321030955
  2. M. E. Quirk, A. J. Letendre, R. A. Ciottone, J. F. Lingley, "Anxiety in patients undergoing MR imaging," Radiology, Vol. 170, No. 2, pp. 463-466, 1989. https://doi.org/10.1148/radiology.170.2.2911670
  3. R. E. Brummett, J. M. Talbot, P. Charuhas, "Potential hearing loss resulting from MR imaging," Radiology, Vol. 169, No. 2, pp. 539-540, 1988. https://doi.org/10.1148/radiology.169.2.3175004
  4. P. Radomskij, M. A. Schmidt, C. W. Heron, D. Prasher, "Effect of MRI noise on cochlear function," Lancet, Vol. 359, No. 9316, pp. 1485-1486, 2002. https://doi.org/10.1016/S0140-6736(02)08423-4
  5. M. McJury, F. G. Shellock, "Auditory noise associated with MR procedures: a review," Journal of Magnetic Resonance Imaging, Vol. 12, No. 1, pp. 37-45, 2000. https://doi.org/10.1002/1522-2586(200007)12:1<37::AID-JMRI5>3.0.CO;2-I
  6. F. G. Shellock, S. M. Morisoli, M. Ziarati, "Measurement of acoustic noise during MR imaging: evaluation of six "worst-case" pulse sequences," Radiology, Vol. 191, No. 1, pp. 91-93, 1994. https://doi.org/10.1148/radiology.191.1.8134603
  7. R. Hunvitz, S. R. Lane, R. A. Bell, M. N. Brant-Zawadzki, "Acoustic analysis of gradient-coil noise in MR imaging," Radiology, Vol. 173, No. 2, pp. 534-548, 1989.
  8. M. McJury, A. Blug, C. Joerger, B. Condon, D. Wyper, "Acoustic noise levels during magnetic resonance imaging scanning at 1.5 T," British Journal of Radiology, Vol. 67, No. 796, pp. 413-415, 1994. https://doi.org/10.1259/0007-1285-67-796-413
  9. M. J. McJury, "Acoustic noise levels generated during high field MR imaging," Clinical Radiology, Vol. 50, No. 5, pp. 331-334, 1995. https://doi.org/10.1016/S0009-9260(05)83427-0
  10. R. E. Brummett, J. M. Talbot, P. Charuhas, "Potential hearing loss resulting from MR imaging," Radiology, Vol. 169, No. 2, pp. 539-540, 1988. https://doi.org/10.1148/radiology.169.2.3175004
  11. F. G. Shellock, M. Ziarati, D. Atkinson, D. Y. Chen, "Determination of gradient magnetic field-induced acoustic noise associated with the use of echo planar and three-dimensional, fast spin echo techniques," Journal of Magnetic Resonance Imaging, Radiology, Vol. 8, No. 5, pp. 1154-1157, 1998. https://doi.org/10.1002/jmri.1880080522
  12. https://www.nch.com/au/wavepad/fft.html
  13. NCH Software WavePad Sound Editor. Version 8.13, Greenwood Village, CO, USA.
  14. S. E. Rha, "High field strength magnetic resonance imaging of abdominal diseases," Journal of Medical Association, Vol. 53, No. 12, pp. 1065-1073, 2010.
  15. M. McJury, A. Blug, C. Joerger, B. Condon, D. Wyper, "Acoustic noise levels during magnetic resonance imaging scanning at 1.5 T," British Journal of Radiology, Vol. 67, No. 796, pp. 413-415, 1994. https://doi.org/10.1259/0007-1285-67-796-413
  16. R. E. Brummett, J. M. Talbot, P. Charuhas, "Potential hearing loss resulting from MR imaging," Radiology, Vol. 169, No. 2, pp. 539-540, 1988. https://doi.org/10.1148/radiology.169.2.3175004
  17. F. G. Shellock, M. Ziarati, D. Atkinson, D. Y. Chen, "Determination of gradient magnetic field-induced acoustic noise associated with the use of echo planar and three-dimensional, fast spin echo techniques," Journal of Magnetic Resonance Imaging, Vol. 8, No. 5, pp. 1154-1157, 1998. https://doi.org/10.1002/jmri.1880080522
  18. S. C. Brennan, W. H. Redd, P. B. Jacobsen, O. Schorr, R. T. Heelan, G. K. Sze, G. Krol, B. E. Peters, J. K. Morrissey, "Anxiety and panic during magnetic resonance scans," Lancet, Vol. 332, No. 8609, pp. 512, 1988.
  19. D. L. Price, J. P. De Wilde, A. M. Papadaki, R. I. Kitney, "Investigation of acoustic noise on 15 MRI scanners from 0.2 T to 3 T," Journal of Magnetic Resonance Imaging, Vol. 13, No. 2, pp. 288-293, 2001. https://doi.org/10.1002/1522-2586(200102)13:2<288::AID-JMRI1041>3.0.CO;2-P
  20. F. G. Shellock, S. M. Morisoli, M. Ziarati, "Measurement of acoustic noise during MR imaging: evaluation of six worse-case pulse sequences," Radiology, Vol. 191, No. 1, pp. 91-93, 1994. https://doi.org/10.1148/radiology.191.1.8134603