• 제목/요약/키워드: ACO algorithm

검색결과 66건 처리시간 0.028초

An Ant Colony Optimization Approach for the Two Disjoint Paths Problem with Dual Link Cost Structure

  • 정지복;서용원
    • 한국경영과학회:학술대회논문집
    • /
    • 한국경영과학회 2008년도 추계학술대회 및 정기총회
    • /
    • pp.308-311
    • /
    • 2008
  • The ant colony optimization (ACO) is a metaheuristic inspired by the behavior of real ants. Recently, ACO has been widely used to solve the difficult combinatorial optimization problems. In this paper, we propose an ACO algorithm to solve the two disjoint paths problem with dual link cost structure (TDPDCP). We propose a dual pheromone structure and a procedure for solution construction which is appropriate for the TDPDCP. Computational comparisons with the state-of-the-arts algorithms are also provided.

  • PDF

돌연변이 개미 군집화 알고리즘을 이용한 스마트 물류 창고의 다중 주문 처리 시스템 (Muti-Order Processing System for Smart Warehouse Using Mutant Ant Colony Optimization)

  • 김창현;김근태;김여진;이종환
    • 반도체디스플레이기술학회지
    • /
    • 제22권3호
    • /
    • pp.36-40
    • /
    • 2023
  • Recently, in the problem of multi-order processing in logistics warehouses, multi-pickup systems are changing from the form in which workers walk around the warehouse to the form in which goods come to workers. These changes are shortening the time to process multiple orders and increasing production. This study considered the sequence problem of which warehouse the items to be loaded on each truck come first and which items to be loaded first when loading multiple pallet-unit goods on multiple trucks in an industrial smart logistics automation warehouse. To solve this problem efficiently, we use the mutant algorithm, which combines the GA algorithm and ACO algorithm, and compare with original system.

  • PDF

ANN을 이용한 절삭성능의 예측과 ACO를 이용한 훈련 (Prediction of Machining Performance using ANN and Training using ACO)

  • 오수철
    • 한국기계가공학회지
    • /
    • 제16권6호
    • /
    • pp.125-132
    • /
    • 2017
  • Generally, in machining operations, the required machining performance can be obtained by properly combining several machining parameters properly. In this research, we construct a simulation model, which that predicts the relationship between the input variables and output variables in the turning operation. Input variables necessary for the turning operation include cutting speed, feed, and depth of cut. Surface roughness and electrical current consumption are used as the output variables. To construct the simulation model, an Artificial Neural Network (ANN) is employed. With theIn ANN, training is necessary to find appropriate weights, and the Ant Colony Optimization (ACO) technique is used as a training tool. EspeciallyIn particular, for the continuous domain, ACOR is adopted and athe related algorithm is developed. Finally, the effects of the algorithm on the results are identified and analyzsed.

다변수 순회 판매원 문제를 위한 퍼지 로직 개미집단 최적화 알고리즘 (Development of Fuzzy Logic Ant Colony Optimization Algorithm for Multivariate Traveling Salesman Problem)

  • 이병길;전규범;이종환
    • 산업경영시스템학회지
    • /
    • 제46권1호
    • /
    • pp.15-22
    • /
    • 2023
  • An Ant Colony Optimization Algorithm(ACO) is one of the frequently used algorithms to solve the Traveling Salesman Problem(TSP). Since the ACO searches for the optimal value by updating the pheromone, it is difficult to consider the distance between the nodes and other variables other than the amount of the pheromone. In this study, fuzzy logic is added to ACO, which can help in making decision with multiple variables. The improved algorithm improves computation complexity and increases computation time when other variables besides distance and pheromone are added. Therefore, using the algorithm improved by the fuzzy logic, it is possible to solve TSP with many variables accurately and quickly. Existing ACO have been applied only to pheromone as a criterion for decision making, and other variables are excluded. However, when applying the fuzzy logic, it is possible to apply the algorithm to various situations because it is easy to judge which way is safe and fast by not only searching for the road but also adding other variables such as accident risk and road congestion. Adding a variable to an existing algorithm, it takes a long time to calculate each corresponding variable. However, when the improved algorithm is used, the result of calculating the fuzzy logic reduces the computation time to obtain the optimum value.

개미군락 최적화 알고리즘을 이용한 진동수 구속조건을 가진 트러스구조물의 크기최적화 (Truss Size Optimization with Frequency Constraints using ACO Algorithm)

  • 이상진;배정은
    • 대한건축학회논문집:구조계
    • /
    • 제35권10호
    • /
    • pp.135-142
    • /
    • 2019
  • Ant colony optimization(ACO) technique is utilized in truss size optimization with frequency constraints. Total weight of truss to be minimized is considered as the objective function and multiple natural frequencies are adopted as constraints. The modified traveling salesman problem(TSP) is adopted and total length of the TSP tour is interpreted as the weight of the structure. The present ACO-based design optimization procedure uses discrete design variables and the penalty function is introduced to enforce design constraints during optimization process. Three numerical examples are carried out to verify the capability of ACO in truss optimization with frequency constraints. From numerical results, the present ACO is a very effective way of finding optimum design of truss structures in free vibration. Finally, we provide the present numerical results as future reference solutions.

NoC-Based SoC Test Scheduling Using Ant Colony Optimization

  • Ahn, Jin-Ho;Kang, Sung-Ho
    • ETRI Journal
    • /
    • 제30권1호
    • /
    • pp.129-140
    • /
    • 2008
  • In this paper, we propose a novel ant colony optimization (ACO)-based test scheduling method for testing network-on-chip (NoC)-based systems-on-chip (SoCs), on the assumption that the test platform, including specific methods and configurations such as test packet routing, generation, and absorption, is installed. The ACO metaheuristic model, inspired by the ant's foraging behavior, can autonomously find better results by exploring more solution space. The proposed method efficiently combines the rectangle packing method with ACO and improves the scheduling results by dynamically choosing the test-access-mechanism widths for cores and changing the testing orders. The power dissipation and variable test clock mode are also considered. Experimental results using ITC'02 benchmark circuits show that the proposed algorithm can efficiently reduce overall test time. Moreover, the computation time of the algorithm is less than a few seconds in most cases.

  • PDF

효과적인 배낭 문제 해결을 위해 DNA 코딩 방법을 적용한 DNA 컴퓨팅 (DNA Computing Adopting DNA coding Method to solve effective Knapsack Problem)

  • 김은경;이상용
    • 한국지능시스템학회논문지
    • /
    • 제15권6호
    • /
    • pp.730-735
    • /
    • 2005
  • 배낭 문제는 단순한 것 같지만 조합 최적화 문제로서, 다항 시간(polynomial time)에 풀리지 않는 NP-hard 문제이다. 이 문제를 해결하기 위해 기존에는 GA(Genetic Algorithms)를 이용하여 해결하였다. 하지만 기존의 방법은 DNA의 정확한 특성을 고려하지 않아, 실제 실험과의 결과 차이가 발생하고 있다. 본 논문에서는 배낭 문제의 문제점을 해결하기 위해 DNA 컴퓨팅 기법에 DNA 코딩 방법을 적용한 ACO(Algorithm for Code Optimization)를 제안한다. ACO는 배낭 문제 중 (0,1)-배낭 문제에 적용하였고, 그 결과 기존의 방법보다 실험적 오류를 최소화하였으며, 또한 적합한 해를 빠른 시간내에 찾을 수 있었다.

패턴 인식에서 특징 선택을 위한 개미 군락 최적화 (Ant Colony Optimization for Feature Selection in Pattern Recognition)

  • 오일석;이진선
    • 한국콘텐츠학회논문지
    • /
    • 제10권5호
    • /
    • pp.1-9
    • /
    • 2010
  • 이 논문은 특징 선택에 사용되는 개미 군락 최적화의 수렴 특성을 개선하기 위해 선택적 평가라는 새로운 기법을 제시한다. 이 방법은 불필요하거나 가능성이 덜한 후보 해를 배제함으로써 계산량을 줄인다. 이 방법은, 그런 해를 찾아내는데 사용할 수 있는 페로몬 정보 때문에 구현이 가능하다. 문제 크기에 따른 알고리즘의 적용가능성을 판단할 목적으로, 특징 선택에 사용되는 세 가지 알고리즘인 탐욕 알고리즘, 유전 알고리즘, 그리고 개미 군락 최적화의 계산 시간을 분석한다. 엄밀한 분석을 위해 원자 연산이라는 개념을 사용한다. 실험 결과는 선택적 평가를 채택한 개미 군락 최적화가 계산 시간과 인식 성능 모두에서 우수함을 보여준다.

최단경로 탐색을 위한 ACO 알고리즘의 비교 분석 (Analysis on ACO Algorithm for Searching Shortest Path)

  • 최경미;박영호
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2012년도 춘계학술발표대회
    • /
    • pp.1354-1356
    • /
    • 2012
  • 최근 ITS(Intelligent Transportation Systems)의 개발과 함께 차량용 내비게이션의 사용이 급증하면서 경로탐색의 중요성이 더욱 가속화되고 있다. 현재 차량용 내비게이션은 멀티미디어 및 정보통신 기술의 결합과 함께 다양한 기능 및 정보를 사용자에게 제공하고 있으며 이러한 기능과 정보를 사용해서 목적지점까지의 최단경로를 탐색하는 것이 내비게이션 시스템의 핵심기능이다. 이러한 경로탐색 알고리즘은 교통시스템, 통신 네트워크, 운송 시스템은 물론 이동 로봇의 경로 설정 등 다양한 분야에 사용되고 있다. 개미 집단 최적화(Ant Colony Optimization, ACO) 알고리즘은 메타 휴리스틱 탐색 방법으로 그리디 탐색(Greedy Search)뿐만 아니라 긍정적 반응의 탐색을 사용한 모집단에 근거한 접근법으로 순환 판매원 문제(Traveling Salesman Problem, TSP)를 풀기 위해 처음으로 제안되었다. 본 논문에서는 개미 집단 최적화(ACO) 알고리즘이 기존의 경로 탐색 알고리즘으로 알려진 Dijkstra 보다 최단경로 탐색에 있어서 더 적합한 알고리즘이라는 것을 설명하고자 한다.