
패턴 인식에서 특징 선택을 위한 개미 군락 최적화
Ant Colony Optimization for Feature Selection in Pattern Recognition

오일석
*
, 이진선

**

전북대학교 컴퓨터공학부/영상정보신기술연구소*, 우석대학교 게임콘텐츠학과**

 Il-Seok Oh(isoh@chonbuk.ac.kr)*, Jin-Seon Lee(jslee@woosuk.ac.kr)**

 요약

이 논문은 특징 선택에 사용되는 개미 군락 최적화의 수렴 특성을 개선하기 위해 선택적 평가라는 새로

운 기법을 제시한다. 이 방법은 불필요하거나 가능성이 덜한 후보 해를 배제함으로써 계산량을 줄인다.

이 방법은, 그런 해를 찾아내는데 사용할 수 있는 페로몬 정보 때문에 구현이 가능하다. 문제 크기에 따른

알고리즘의 적용가능성을 판단할 목적으로, 특징 선택에 사용되는 세 가지 알고리즘인 탐욕 알고리즘, 유

전 알고리즘, 그리고 개미 군락 최적화의 계산 시간을 분석한다. 엄밀한 분석을 위해 원자 연산이라는 개

념을 사용한다. 실험 결과는 선택적 평가를 채택한 개미 군락 최적화가 계산 시간과 인식 성능 모두에서

우수함을 보여준다.

 ■ 중심어 :∣특징선택∣그리디 알고리즘∣유전알고리즘∣개미 군락 최적화∣패턴인식∣

Abstract

This paper propose a novel scheme called selective evaluation to improve convergence of

ACO (ant colony optimization) for feature selection. The scheme cutdown the computational

load by excluding the evaluation of unnecessary or less promising candidate solutions. The

scheme is realizable in ACO due to the valuable information, pheromone trail which helps

identify those solutions. With the aim of checking applicability of algorithms according to

problem size, we analyze the timing requirements of three popular feature selection algorithms,

greedy algorithm, genetic algorithm, and ant colony optimization. For a rigorous timing analysis,

we adopt the concept of atomic operation. Experimental results showed that the ACO with

selective evaluation was promising both in timing requirement and recognition performance.

 ■ keyword :∣Feature Selection∣Greedy Algorithm∣Genetic Algorithm∣Ant Colony Optimization∣Pattern Recognition∣

접수번호 : #100119-001

접수일자 : 2010년 01월 19일

심사완료일 : 2010년 04월 02일

교신저자 : 이진선, e-mail : ijslee@woosuk.ac.kr

I. Introduction

One of the most important tasks in building a

pattern recognition system is to design discriminatory

features. The feature set should be optimal in

discriminating different classes of patterns. It also

should be small to be desirable in computational load.

Practically the over-production method is used, which

extracts hundreds of features from a character sample

[1]. Some designers extract several different types of

한국콘텐츠학회논문지 '10 Vol. 10 No. 52

features and combine them to get a larger feature set.

Those feature sets inevitably include useless and/or

redundant features. So if we identify and remove

them, the resulting classifier becomes more compact

which leads to a recognition system requiring less

memory and less computation time. In some

circumstances, the compact classifier shows improved

recognition performance since a smaller-size

classifier is less sensitive to the over-fitting [2]. This

is the case especially when the training set is small.

The role of feature selection is to reduce the feature

set size by removing useless, redundant, or least

useful features. The algorithms should be both

efficient in terms of computation time and effective in

finding near-optimal solutions [3].

This paper concentrates on identifying

distinguishing characteristics of the feature design in

pattern recognition domain. Based on the

characteristics, we attempt to design feature selection

algorithm which is best applicable to the pattern

recognition problems.

Kudo attempted to divide the feature set size into

three categories, small to be 0~19, medium to be

20-49, and large to be over 50 [4]. However this

categorization is arbitrary and so the feature design

benefits little from it. In this paper, we propose a

task-oriented categorization which reveals the size

characteristics of different types of problems. The CR

(character recognition) domain is distinguishable from

general PR (pattern recognition) and IR (information

retrieval) problems in size aspect of the feature sets.

Usually PR problems use tensd IR (inform. For

ra dists, the dina UsuaWDBC (Wisconsin breast

cancer) and IPUMS (census dina from Los Angeles

and Long Beach areas) in UCI repository have 30 and

61 features, respectively [5]. In IR applications,

different words appearing in text documents are used

as features. So feature set size is usually very huge,

e.g., hundreds of thousands. The CR lies in between

PR and IR. It is usual that CR uses hundreds of

features [1].

This paper adopts the edge-based ACO (ant colony

optimization) algorithm, in which pheromone trail is

put on the graph edges, for feature selection of CR

problems. For a general principle of ACO, we refer

the readers to [6]. Since CR uses hundreds of

features, the number of edges is tens or hundreds of

thousands. So the edge pheromone is manageable.

The edge-based version has the advantage of

naturally considering the correlations between

features [7]. (In IR applications, since the number of

features is hundreds of thousands, node-based

pheromone were used [8].)

This paper also presents a scheme, called selective

evaluation, to improve the convergence and

recognition performance of ACO. The scheme reduces

computational load by excluding unnecessary or less

promising candidate solutions. Note that ACO can

adopt the scheme because it keeps the valuable

information, pheromone trail which helps identify

those solutions.

The proposed ACO is compared with two kinds of

popular algorithms, greedy algorithm and GA (genetic

algorithm) in terms of computational requirements

and recognition performance. Both analytic and

empirical comparisons have been performed. The

results obtained using handwritten numerals showed

that the ACO is the most promising method both in

computational load and recognition performance. The

selective evaluation produced the improved

performance. We also explain briefly why the

selective evaluation is better than other schemes.

Section II describes conventional feature selection

algorithms. Section III describes ACO and the

selective evaluation scheme. Section IV presents

timing analysis of the algorithms. In Section V,

패턴 인식에서 특징 선택을 위한 개미 군락 최적화 3

experimental results and discussions are described.

Section VI concludes the paper.

II. Conventional Algorithms

The feature selection problem involves the selection

of a subset of d features from a total of D features,

based on a given optimization criterion. Let us denote

the D features uniquely by distinct numbers from 1 to

D, so that the total set of D features can be written

as U={1,2,….,D}. X denotes the subset of selected

features and Y denotes the set of remaining features.

So U=X∪Y at anytime. J(X) denotes a function

evaluating the performance of X. J() may evaluate

either the accuracy of a specific classifier on a

specific dataset (e.g. the wrapper approach as in [9])

or a generic statistical measurement (e.g. the filter

approach). The choice of evaluation function, J(),

depends on the particular application. In this paper,

recognition accuracy of MLP (multi-layer perceptron)

was used for the values of J().

The feature selection algorithms can be divided into

greedy approach and meta-heuristic approach.

Section 1 describes two greedy algorithms, SFS and

PTA. A variety of meta-heuristics with effective

searching capability are available [10]. Of these, two

population-based approaches, genetic algorithm (GA)

and ant colony optimization (ACO) are the most

popular. Section 2 describes GA. ACO will be

presented separately in Section III.

1. Greedy Algorithms
The traditional algorithms such as SFS (sequential

forward search), PTA (plus-and take-away), and

SFFS (sequential forward floating search) belong to

the greedy approach. They search the feature subset

by sequentially adding the most significant features

and/or deleting the least significant features. They

are limited in finding a near-optimal solution, due to

their inherent tendency to become trapped at local

optimum points [3].

We introduce the basic operations used by greedy

algorithms. For the notations, see the first paragraph

of Section II. The size of the set, S, is denoted by |S|.

Using the add and rem operations, the SFS and PTA

algorithms can be described as follow.

rem: Choose the least significant feature x in X

such that x=argmaxa∊XJ(X-{a}), and move x
to Y.

add: Choose the most significant feature y in Y

such that y=argmaxa∊YJ(X∪{a}), and move y
to X.

Algorithm SFS:

1. X=Φ; Y={i|1≤i≤D};

2. repeat add until |X|=d;

Algorithm PTA(l,r) with l>r:

1. X=Φ; Y={i|1≤i≤D};

2. repeat { repeat add l times; repeat rem r

 times;} until |X|=d;

2. Genetic Algorithm
The GA is being actively researched as promising

methods for solving combinatorial problems with an

exponential search space [11]. The outline of GA is

described by Algorithm GA. GA simulates the

biological evolution process such as natural selection

and genetic operations of crossover and mutation.

In the initialization stage, random bit generator is

used to set the genes of chromosomes in P. In the

selection stage of line 4, rank-based roulette-wheel

method is used, where i-th chromosome in the sorted

list is given the probability of selection q(1-q)i-1. For

한국콘텐츠학회논문지 '10 Vol. 10 No. 54

the genetic operations in line 5, standard multi-point

crossover and standard bit-flipping mutation

operators are used.

Algorithm GA:

1. Initialize population P;

2. Evaluate chromosomes in P;

3. repeat {

4. Select two parents;

5. Perform crossover and mutation to get

 offspring;

6. Evaluate the offspring;

7. Replace a chromosome in P with offspring;

8. } until (stopping condition);

III. Conventional Algorithms

Section 1 describes conventional ACO. In Section 2,

we propose a novel idea of embedding the selective

evaluation scheme in ACO.

1. Ant Colony Optimization
The ACO uses a graph to represent the state of

solution space, where a node corresponds to a feature

[7]. [Figure 1] shows on-edge version of pheromone

representation. The τij, 1≤i, j≤D, stores the

pheromonal trail deposited between features xi and xj.

1

2

34

5

τ12
τ13τ14

τ15

τ23

τ24

τ25

τ34

τ35

τ45

1

2

34

5

11

22

3344

55

τ12
τ13τ14

τ15

τ23

τ24

τ25

τ34

τ35

τ45

Figure 1. Graph storing pheromone trails
 when D=5

We use Min-Max version of ACO, where τmin and

τmax are given as user-defined parameters. The τij is

controlled to be always within the range [τmin,τmax]. In

the initialization stage, all the edges are set to have

maximum value, τmax. In line3, i-th ant walks on the

graph and generates a candidate solution (feature

subset) Xi. Initially Xi is empty. The ant randomly

chooses a node (feature) and adds it to Xi. Then the

ant successively chooses next node xk∈Y with the

probability p(xk,Xi) of Equation (1) and adds it to Xi.

In Algorithm ACO, N is the number of ants.

)1(
),(η),(τ

),(η),(τ
),(

βα

βα

∑
∈

=

Yx
ijij

ikik
ik

j

XxXx
XxXx

Xxp

We use the elitism in which only the best, called

elite and denoted in (2) by Xq, among the candidate

solutions is given the chance of updating pheromone

in line 4. Equation (2) updates the pheromone trail for

the edge connecting node xi and xj. The ρ is the

pheromone evaporation parameter. By the min() and

max() functions, pheromone trail is kept within [τmin,

τmax]. In Equation (3), Sq is the value of J(Xq) and

Sbest is the value of the best solution found so far

from the first generation.

)2()τ),τ),,,(δτ)ρ1min(max((τ maxminqjiijij Xxx+−=

)3(
otherwise,0

and if,
1

1
),,(δ

⎪
⎩

⎪
⎨

⎧ ∈∈
−+=

qjqi
qbestqji

XxXx
SSXxx

Algorithm ACO:

1. Initialize pheromone trail on every edge,

 τij=τmax, 1≤i,j≤D;

2. repeat {

3. for (i=1 to N) Construct solution (subset)

 Xi and evaluate it;

4. for (every edge) Update pheromone trail;

5. }until (stopping-condition);

패턴 인식에서 특징 선택을 위한 개미 군락 최적화 5

2. Ant Colony Optimization with Selective
Evaluation
The aim of this section is to devise an improved

version of ACO. Let us analyze the computational

time of Algorithm ACO in Section 3. The dominant

operation is the subset evaluation in line 3. The other

operations are negligible. One generation of the loop

performs N subset evaluations where N is the

number of ants. In this situation, if we can reduce the

number of subset evaluations in a reasonable way,

convergence speed can be improved.

Here we propose the selective evaluation scheme. It

actually evaluates only the subsets which are likely to

be the elite. In ACO, the pheromone provides valuable

information which enables implementation of the

selective evaluation. We ‘pre-evaluate’ the candidate

solutions and select the top-ranked solution for the

actual evaluation. The pre-evaluation is simply

accomplished by adding pheromone values on the

edges connecting adjacent nodes on a candidate

solution. For example, when a solution is x2-x4-x1,

score obtained by the pre-evaluation is τ24+τ41.

In early generations, the pheromone is unreliable.

As generations proceed, the pheromone becomes more

reliable. So starting with a high ratio of actual

evaluation, we reduce the ratio gradually as time

goes. Equation (4) decides the ratio for the generation

t. The parameter r is a decreasing factor. The

parameter lower_bound keeps the ratio to be above its

value.

)4()_,max()(boundlowerrtq t=

Algorithm ACO with selective evaluation:

1. Initialize pheromone trail on every edge;

2. t=0; // generation

3. repeat {

4. for (i=1 to N) Construct subset Xi;

5. “Pre-evaluate” Xi, 1≤i≤N using

 pheromone information;

6. Sort Xi, 1≤i≤N;

7. for (i=1 to N) if (Xi’s rank≤N
*q(t))

 Evaluate Xi;

8. for (every edge) Update pheromone trail;

9. t++;

10. } until (stopping-condition);

IV. Timing Analysis

If we have a time unit, it would be very helpful to

analyze the timing requirements. Kudo and Sklansky

used the number of subset evaluations and big-O

notation [4]. However it is not very helpful, because

the evaluations of subsets with different sizes

consume significantly different amounts of

computation time. Oh proposed a rigorous method

that uses atomic operation requiring a nearly fixed

amount of CPU cycles [12]. We will adopt this

concept to compare the timing requirements of greedy

algorithms, GA, and ACO.

Let t(s) be the computation time required to

evaluate a feature subset with size s. The value of

t(s) depends not only on s, but also on the size of the

training sample set, when we use a classifier for the

subset evaluation. Since the size of the sample sets is

fixed in advance for a given feature selection job, it

can be regarded as constant. Therefore, t(s) depends

only on the value of s.

We define the linearity property of classification

algorithms and then the atomic operation.

Definition 1: When a classifier satisfies both in

learning and recognition stages that t(s) is

approximately equal to s
*t(1), we say that the

classifier is approximately linear.

한국콘텐츠학회논문지 '10 Vol. 10 No. 56

 We can easily prove that the popular classification

algorithms such as MLP, SVM, and k-NN are

approximately linear. The linearity assumption holds

for k-NN classifiers, since the dominant operation is

the distance calculation that is linear to the number of

features. This assumption also holds for a neural

network classifier, MLP, since the amount of

computation by the forward classification and

backward learning processes is proportional to the

number of input nodes.

Definition 2: The evaluation of a single feature is

called an atomic operation. The time required for the

atomic operation is t(1) and it is referred to as the

atomic time. We abbreviate the atomic time as α.

Note that given a specific character recognition

problem with training and test sets, the atomic time

is fixed to be a constant. So we can use the atomic

time α as a unit in measuring the timing cost of a

feature selection algorithm.

Now, we analyze the computation time of feature

selection algorithms. Let us first analyze the greedy

algorithms. Equation (5) shows the timing

requirement for the rem and add operations. In this

notation, the current size of X is s.

)5(
))1((α)()1()(

)(α)1()(
2

2

⎪⎭

⎪
⎬
⎫

+−+−=−⋅+=

−=⋅−=

DsDssDstaddT

sssstremT

As shown by Algorithm SFS in Section 1, the SFS

repeats the add operation d times when it selects d

features from D ones. So the time required by SFS

can be formulated as Equation(6).

)6()
32

3
2

(α)(α 2
32

1

2 ddDdDdDssDs
d

s
−−+≅+−−∑

=

The computation time of GA and ACO can be more

easily analyzed. The time of ACO is αdTga since each

generation evaluates one subset whose size is d. Tga

is the number of total generations. The ACO requires

αdNTaco where N is the number of ants and Taco is

the number of total generations. [Table 1]

summarizes the analysis. It is worth noting that the

time for GA and ACO is independent on the original

feature set size D. The greedy algorithms are

influenced by the value of D, and the time becomes

prohibitive for large D.

Note that we have no control on the timing

requirement of SFS in (6). On the contrary, we can

control the time of GA and ACO by changing the

number of generations.

Table 1. Timing analysis of SFS, GA, and ACO

Algor
ithms

Time
(Dependent

on D?)

User
contr
ollabl
e?

Actual timing
example*

SFS
α(Dd2/2+3Dd/2

-d3/3-d2)
(yes)

no
53.62 hours
for d=64

167.73 hours
for d=128

GA αdTga
(no) yes

Given 72 hours,
Tga9579 for d=64 and

4799 for d=128.

ACO αdNTaco
(no) yes

Given 72 hours,
Taco320 for d=64

and
160 for d=128.

* When D=256 and α=0.422 seconds (measured for the
experiments in Section IV)

V. Experiments

1. Experimental Setup and Results
The experiments have been done using CENPARMI

handwritten numeral database. It has 4,000 training

and 2,000 test samples [13]. For the original feature

set, we used DDD which has 256 features [14]. So in

the given problem, D is 256. For the subset

패턴 인식에서 특징 선택을 위한 개미 군락 최적화 7

evaluation, MLP was used. Its architecture was

(1+d)-20-10 where three values represents the

number of input, hidden, and output nodes,

respectively. It was trained using error

back-propagation algorithm and tested using the test

set. The test accuracy was used as the evaluation

result, i.e., the value of J(). The accuracy was

calculated as a ratio of the number of correctly

recognized samples to the total number of samples.

No rejection was allowed.

Under these experimental conditions, the atomic

time α was 0.422 second. (We used a Pentium

processor with 3.4GHz and 2M cache memory. The

main memory was 4G bytes.) The last column of

[Table 1] shows the actual timing requirements. The

SFS requires 168 hours to select 128 features. It is too

time consuming to be used practically. (In the

industrial applications, much bigger training set is

usually used, eg, 100,000 samples.) The GA and ACO

have the advantage of controllability of timing.

Assuming 3 days of the computation time is given,

we set the stopping-condition (line 8 of Algorithm

GA and line 5 of Algorithm ACO) to quit the loop

when the timer reaches 72 hours. The last column of

[Table 1] shows the maximum generation when 3

days are given.

The GA and ACO used the following parameters.

For their stopping-condition, 72 hours were given.

GA: population size=30, mutation rate=0.1, q for

 rank-based selection=0.25

ACO: population size=30, α=1, β=0 (ignoring η

 component in Equation (1)), ρ (evaporation

 rate)=0.06, [τmin,τmax]=[0.2, 20.0]

ACO with the selective evaluation: r=0.98,

 lower-bound=0.3

[Table 2] shows the recognition accuracies obtained

by SFS, GA, and ACO. Note that SFS used 54 and

168 hours for d=64 and 128, respectively. The GA and

ACO obtained the performances using 72 hours for

both d=64 and 128. For an objective comparison, we

ran GA and ACO 6 times independently, and their

average, minimum, and maximum were recorded in

[Table 2].

[Table 2] illustrates that ACO produced better

solutions than GA. It also shows that the selective

evaluation scheme improved the ACO in a significant

amount. The scheme increased the average accuracies

by 0.18% and 0.23% for d=64 and 128, respectively.

These amounted to the error reduction ratio, 6.55%

and 10.45%.

The last row is the accuracy when we used the

original feature set. It was 97.30%. When we selected

half the original set, the accuracy was improved to

98.03% (error reduction ratio 27.04%). So we can say

that in this problem instance, we obtained both the

compact classifier (about twice faster than the

original classifier) and the better accuracy. The

CENPARMI training set size is 4000, which is

believed to be small, considering the large variations

of handwriting style. (The database was collected

from real-world mail pieces.)

Table 2. Comparison of accuracies of SFS, GA,
and ACO (Subset evaluation by MLP
classifier, Unit=%)

Subset
size
(d)

SFS GA
ACO

Without
selective
evaluation

With
selective
evaluation

64
(0.25D) 97.25

97.12
(96.75,
97.30)

97.25
(97.10,
97.45)

97.43
(97.35,
97.50)

128
(0.5D) 97.50

97.66
(97.50,
97.80)

97.80
(97.70,
97.85)

98.03
(98.00,
98.05)

256
(D) 97.30

* For GA and ACO, average (minimum, maximum) were
recorded for 6 independent runs.

한국콘텐츠학회논문지 '10 Vol. 10 No. 58

2. Discussions
It is difficult to explain rigorously why the selective

evaluation is superior. Here we will explain intuitively

only, not in a rigorous manner. Our statistical

observation showed that the selected ants were really

the elite (i.e., the best ant), but sometimes they were

not. However, it was more probable to be elite. So the

selective evaluation scheme still works to evolve

towards better solutions. Since the selective

evaluation can execute more generations, it is

probable to find better solutions than conventional

ACO. Additionally the cases in which the selected ant

is not elite perturb the current graph information, so

it might be advantageous in escaping from the

premature convergence.

VI. Conclusions

This paper proposed a feature selection algorithm

for the pattern recognition. The ACO with the newly

proposed selective evaluation scheme was the best

among greedy algorithm, GA, and ACO. It consumed

a reasonable computation time. One of its practical

advantages is that its timing is controllable. In other

words, we can say that, if the algorithm is given

more computation time, they might find out better

solutions than the ones in Table 2. In future work, we

will analyze and explain in a more rigorous manner

why the selective evaluation is superior.

참 고 문 헌

[1] O. D. Trier, A. K. Jain, and T. Taxt, “Feature

extraction methods for character recognition-a

survey,” Pattern Recognition, Vol.29, No.4,

pp.641-662, 1996.

[2] S. Theodoridis and K. Koutroumbas, Pattern

Recognition, 3rd ed., Academic Press, 2006.

[3] J. Kittler, "Feature selection and extraction," in

Handbook of Pattern Recognition and Image

Processing, Academic Press (Edited by T.Y.

Young and K.S. Fu), pp.59-83, 1986.

[4] M. Kudo and J. Sklansky, “Comparison of

algorithms that select features for pattern

recognition,” Pattern Recognition, Vol.33, No.1,

pp.25-41, 2000.

[5] P. M. Murphy and D. W. Aha, UCI repository

for machine learning databases,

(http://www.ics. uci.edu/~mlearn/databases/),

1994.

[6] Marco Dorigo and Christian Blum, “Ant colony

optimization: a survey,” Theoretical Computer

Science, Vol.344, pp.243-278, 2005.

[7] Christine Solnon and Derek Bridge, “An ant

colony optimization meta-heuristic for subset

selection problems,” in System Engineering

using Particle Swarm Optimization (Edited by

Nadia Nedjah and Luiza Mourelle), Nova

Science publisher, pp.7-29, 2006.

[8] M. H. Aghdam, N. Ghasem-Aghaee, and M. E.

Basiri, “Text feature selection using ant colony

optimization,” Expert Systems with

Applications, Vol.36, pp.6843-6853, 2009.

[9] P. Langley, “Selection of relevant features in

machine learning,” Proc. of AAAI Fall

Symposium on Relevance, pp.1-5, 1994.

[10] Christian Blum and Andrea Roli,

“Metaheuristics in combinatorial optimization:

overview and conceptual comparison,” ACM

Computing Surveys, Vol.35, No.3, pp.268-308,

2003.

[11] David E. Goldberg, Genetic Algorithms in

Search, Optimization, and Machine Learning,

Addison-Wesley, Boston, 1989.

패턴 인식에서 특징 선택을 위한 개미 군락 최적화 9

[12] I. S. Oh, J. S. Lee, and B. R. Moon, “Hybrid

genetic algorithms for feature selection,” IEEE

Transactions on Pattern Analysis and Machine

Intelligence, Vol.26, No.11, pp.1424-1437, 2004.

[13] C.-L. Liu, “Handwritten digit recognition:

benchmarking of state-of-the-art techniques,”

Pattern Recognition, Vol.36, No.10,

pp.2271-2285, 2003.

[14] I. S. Oh and C. Y. Suen, “Distance features for

neural network-based recognition of

handwritten characters," International Journal

on Document Analysis and Recognition, Vol.1,

pp.73-88, 1998.

저 자 소 개

오 일 석(Il-Seok Oh) 정회원
▪1984년 : 서울대학교 컴퓨터공학

과(공학사)

▪1992년 : KAIST 전산학과 박사

▪1992년 9월 ～ 현재 : 전북대학교

컴퓨터공학부 교수

 <관심분야> : 컴퓨터비젼, 패턴인식

이 진 선(Jin-Seon Lee) 정회원
▪1985년 : 전북대학교 전산통계학

과(이학사)

▪1995년 : 전북대학교 전자계산기

공학과 박사

▪1995년 3월 ～ 현재 : 우석대학교

게임콘텐츠학과 교수

 <관심분야> : 멀티미디어, 패턴인식

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

