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 요약

이 논문은 특징 선택에 사용되는 개미 군락 최적화의 수렴 특성을 개선하기 위해 선택적 평가라는 새로

운 기법을 제시한다. 이 방법은 불필요하거나 가능성이 덜한 후보 해를 배제함으로써 계산량을 줄인다. 

이 방법은, 그런 해를 찾아내는데 사용할 수 있는 페로몬 정보 때문에 구현이 가능하다. 문제 크기에 따른 

알고리즘의 적용가능성을 판단할 목적으로, 특징 선택에 사용되는 세 가지 알고리즘인 탐욕 알고리즘, 유

전 알고리즘, 그리고 개미 군락 최적화의 계산 시간을 분석한다. 엄밀한 분석을 위해 원자 연산이라는 개

념을 사용한다. 실험 결과는 선택적 평가를 채택한 개미 군락 최적화가 계산 시간과 인식 성능 모두에서 

우수함을 보여준다.

 
 ■ 중심어 :∣특징선택∣그리디 알고리즘∣유전알고리즘∣개미 군락 최적화∣패턴인식∣ 

Abstract

This paper propose a novel scheme called selective evaluation to improve convergence of 

ACO (ant colony optimization) for feature selection. The scheme cutdown the computational 

load by excluding the evaluation of unnecessary or less promising candidate solutions. The 

scheme is realizable in ACO due to the valuable information, pheromone trail which helps 

identify those solutions. With the aim of checking applicability of algorithms according to 

problem size, we analyze the timing requirements of three popular feature selection algorithms, 

greedy algorithm, genetic algorithm, and ant colony optimization. For a rigorous timing analysis, 

we adopt the concept of atomic operation. Experimental results showed that the ACO with 

selective evaluation was promising both in timing requirement and recognition performance.

 ■ keyword :∣Feature Selection∣Greedy Algorithm∣Genetic Algorithm∣Ant Colony Optimization∣Pattern Recognition∣

    

접수번호 : #100119-001

접수일자 : 2010년 01월 19일 

심사완료일 : 2010년 04월 02일

교신저자 : 이진선, e-mail : ijslee@woosuk.ac.kr

I. Introduction

One of the most important tasks in building a 

pattern recognition system is to design discriminatory 

features. The feature set should be optimal in 

discriminating different classes of patterns. It also 

should be small to be desirable in computational load. 

Practically the over-production method is used, which 

extracts hundreds of features from a character sample 

[1]. Some designers extract several different types of 
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features and combine them to get a larger feature set. 

Those feature sets inevitably include useless and/or 

redundant features. So if we identify and remove 

them, the resulting classifier becomes more compact 

which leads to a recognition system requiring less 

memory and less computation time. In some 

circumstances, the compact classifier shows improved 

recognition performance since a smaller-size 

classifier is less sensitive to the over-fitting [2]. This 

is the case especially when the training set is small. 

The role of feature selection is to reduce the feature 

set size by removing useless, redundant, or least 

useful features. The algorithms should be both 

efficient in terms of computation time and effective in 

finding near-optimal solutions [3]. 

This paper concentrates on identifying 

distinguishing characteristics of the feature design in 

pattern recognition domain. Based on the 

characteristics, we attempt to design feature selection 

algorithm which is best applicable to the pattern 

recognition problems.

Kudo attempted to divide the feature set size into 

three categories, small to be 0~19, medium to be 

20-49, and large to be over 50 [4]. However this 

categorization is arbitrary and so the feature design 

benefits little from it. In this paper, we propose a 

task-oriented categorization which reveals the size 

characteristics of different types of problems. The CR 

(character recognition) domain is distinguishable from 

general PR (pattern recognition) and IR (information 

retrieval) problems in size aspect of the feature sets. 

Usually PR problems use tensd IR (inform. For 

ra dists, the dina UsuaWDBC (Wisconsin breast 

cancer) and IPUMS (census dina from Los Angeles 

and Long Beach areas) in UCI repository have 30 and 

61 features, respectively [5]. In IR applications, 

different words appearing in text documents are used 

as features. So feature set size is usually very huge, 

e.g., hundreds of thousands. The CR lies in between 

PR and IR. It is usual that CR uses hundreds of 

features [1].

This paper adopts the edge-based ACO (ant colony 

optimization) algorithm, in which pheromone trail is 

put on the graph edges, for feature selection of CR 

problems. For a general principle of ACO, we refer 

the readers to [6]. Since CR uses hundreds of 

features, the number of edges is tens or hundreds of 

thousands. So the edge pheromone is manageable. 

The edge-based version has the advantage of 

naturally considering the correlations between 

features [7]. (In IR applications, since the number of 

features is hundreds of thousands, node-based 

pheromone were used [8].) 

This paper also presents a scheme, called selective 

evaluation, to improve the convergence and 

recognition performance of ACO. The scheme reduces 

computational load by excluding unnecessary or less 

promising candidate solutions. Note that ACO can 

adopt the scheme because it keeps the valuable 

information, pheromone trail which helps identify 

those solutions.

The proposed ACO is compared with two kinds of 

popular algorithms, greedy algorithm and GA (genetic 

algorithm) in terms of computational requirements 

and recognition performance. Both analytic and 

empirical comparisons have been performed. The 

results obtained using handwritten numerals showed 

that the ACO is the most promising method both in 

computational load and recognition performance. The 

selective evaluation produced the improved 

performance. We also explain briefly why the 

selective evaluation is better than other schemes.

Section II describes conventional feature selection 

algorithms. Section III describes ACO and the 

selective evaluation scheme. Section IV presents 

timing analysis of the algorithms. In Section V, 
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experimental results and discussions are described. 

Section VI concludes the paper.

II. Conventional Algorithms

The feature selection problem involves the selection 

of a subset of d features from a total of D features, 

based on a given optimization criterion. Let us denote 

the D features uniquely by distinct numbers from 1 to 

D, so that the total set of D features can be written 

as U={1,2,….,D}. X denotes the subset of selected 

features and Y denotes the set of remaining features. 

So U=X∪Y at anytime. J(X) denotes a function 

evaluating the performance of X. J() may evaluate 

either the accuracy of a specific classifier on a 

specific dataset (e.g. the wrapper approach as in [9]) 

or a generic statistical measurement (e.g. the filter 

approach). The choice of evaluation function, J(), 

depends on the particular application. In this paper, 

recognition accuracy of MLP (multi-layer perceptron) 

was used for the values of J().

The feature selection algorithms can be divided into 

greedy approach and meta-heuristic approach. 

Section 1 describes two greedy algorithms, SFS and 

PTA. A variety of meta-heuristics with effective 

searching capability are available [10]. Of these, two 

population-based approaches, genetic algorithm (GA) 

and ant colony optimization (ACO) are the most 

popular. Section 2 describes GA. ACO will be 

presented separately in Section III.

1. Greedy Algorithms
The traditional algorithms such as SFS (sequential 

forward search), PTA (plus-and take-away), and 

SFFS (sequential forward floating search) belong to 

the greedy approach. They search the feature subset 

by sequentially adding the most significant features 

and/or deleting the least significant features. They 

are limited in finding a near-optimal solution, due to 

their inherent tendency to become trapped at local 

optimum points [3].

We introduce the basic operations used by greedy 

algorithms. For the notations, see the first paragraph 

of Section II. The size of the set, S, is denoted by |S|. 

Using the add and rem operations, the SFS and PTA 

algorithms can be described as follow.

 

rem: Choose the least significant feature x in X 

such that x=argmaxa∊XJ(X-{a}), and move x 
to Y.

add: Choose the most significant feature y in Y 

such that y=argmaxa∊YJ(X∪{a}), and move y  
to X.

 

Algorithm SFS:

1.  X=Φ; Y={i|1≤i≤D};

2.  repeat add until |X|=d;

 

Algorithm PTA(l,r) with l>r:

1.  X=Φ; Y={i|1≤i≤D};

2.  repeat { repeat add l times; repeat  rem r   

 times;} until  |X|=d;

2. Genetic Algorithm
The GA is being actively researched as promising 

methods for solving combinatorial problems with an 

exponential search space [11]. The outline of GA is 

described by Algorithm GA. GA simulates the 

biological evolution process such as natural selection 

and genetic operations of crossover and mutation.

In the initialization stage, random bit generator is 

used to set the genes of chromosomes in P. In the 

selection stage of line 4, rank-based roulette-wheel 

method is used, where i-th chromosome in the sorted 

list is given the probability of selection q(1-q)i-1. For 
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the genetic operations in line 5, standard multi-point 

crossover and standard bit-flipping mutation 

operators are used.

Algorithm GA:

1.  Initialize population P;

2.  Evaluate chromosomes in P;

3.  repeat {

4.    Select two parents;

5.    Perform crossover and mutation to get

        offspring; 

6.    Evaluate the offspring;

7.    Replace a chromosome in P with offspring;

8.  } until (stopping condition);

III. Conventional Algorithms

Section 1 describes conventional ACO. In Section 2, 

we propose a novel idea of embedding the selective 

evaluation scheme in ACO. 

1. Ant Colony Optimization
The ACO uses a graph to represent the state of 

solution space, where a node corresponds to a feature 

[7]. [Figure 1] shows on-edge version of pheromone 

representation. The τij, 1≤i, j≤D, stores the 

pheromonal trail deposited between features xi  and xj.
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Figure 1. Graph storing pheromone trails 
           when D=5

We use Min-Max version of ACO, where τmin and 

τmax are given as user-defined parameters. The τij is 

controlled to be always within the range [τmin,τmax]. In 

the initialization stage, all the edges are set to have 

maximum value, τmax. In line3, i-th ant walks on the 

graph and generates a candidate solution (feature 

subset) Xi. Initially Xi is empty. The ant randomly 

chooses a node (feature) and adds it to Xi. Then the 

ant successively chooses next node xk∈Y with the 

probability p(xk,Xi) of Equation (1) and adds it to Xi. 

In Algorithm ACO, N is the number of ants.

)1(
),(η),(τ

),(η),(τ
),(

βα

βα

∑
∈

=

Yx
ijij

ikik
ik

j

XxXx
XxXx

Xxp

We use the elitism in which only the best, called 

elite and denoted in (2) by Xq, among the candidate 

solutions is given the chance of updating pheromone 

in line 4. Equation (2) updates the pheromone trail for 

the edge connecting node xi and xj. The ρ is the 

pheromone evaporation parameter. By the min() and 

max() functions, pheromone trail is kept within [τmin, 

τmax]. In Equation (3), Sq is the value of J(Xq) and 

Sbest is the value of the best solution found so far 

from the first generation.
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Algorithm ACO:

1.  Initialize pheromone trail on every edge, 

   τij=τmax, 1≤i,j≤D;

2.  repeat {

3.     for (i=1 to  N) Construct solution (subset)  

            Xi and evaluate it;

4.     for (every edge) Update pheromone trail;

5.  }until (stopping-condition);
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2. Ant Colony Optimization with Selective 
Evaluation
The aim of this section is to devise an improved 

version of ACO. Let us analyze the computational 

time of Algorithm ACO in Section 3. The dominant 

operation is the subset evaluation in line 3. The other 

operations are negligible. One generation of the loop 

performs N subset evaluations where N is the 

number of ants. In this situation, if we can reduce the 

number of subset evaluations in a reasonable way, 

convergence speed can be improved.

Here we propose the selective evaluation scheme. It 

actually evaluates only the subsets which are likely to 

be the elite. In ACO, the pheromone provides valuable 

information which enables implementation of the 

selective evaluation. We ‘pre-evaluate’ the candidate 

solutions and select the top-ranked solution for the 

actual evaluation. The pre-evaluation is simply 

accomplished by adding pheromone values on the 

edges connecting adjacent nodes on a candidate 

solution. For example, when a solution is x2-x4-x1, 

score obtained by the pre-evaluation is τ24+τ41.

In early generations, the pheromone is unreliable. 

As generations proceed, the pheromone becomes more 

reliable. So starting with a high ratio of actual 

evaluation, we reduce the ratio gradually as time 

goes. Equation (4) decides the ratio for the generation 

t. The parameter r is a decreasing factor. The 

parameter lower_bound keeps the ratio to be above its 

value.

 )4()_,max()( boundlowerrtq t=

 

Algorithm ACO with selective evaluation:

1.  Initialize pheromone trail on every edge;

2.  t=0; // generation

3.  repeat {

4.     for (i=1 to N) Construct subset Xi;

5.       “Pre-evaluate” Xi, 1≤i≤N using   

          pheromone information;

6.     Sort Xi, 1≤i≤N;

7.   for (i=1 to N) if (Xi’s rank≤N
*q(t))        

          Evaluate Xi;

8.     for (every edge) Update pheromone trail;

9.     t++;

10.  } until (stopping-condition);

IV. Timing Analysis

If we have a time unit, it would be very helpful to 

analyze the timing requirements. Kudo and Sklansky 

used the number of subset evaluations and big-O 

notation [4]. However it is not very helpful, because 

the evaluations of subsets with different sizes 

consume significantly different amounts of 

computation time. Oh proposed a rigorous method 

that uses atomic operation requiring a nearly fixed 

amount of CPU cycles [12]. We will adopt this 

concept to compare the timing requirements of greedy 

algorithms, GA, and ACO.

Let t(s) be the computation time required to 

evaluate a feature subset with size s. The value of 

t(s) depends not only on s, but also on the size of the 

training sample set, when we use a classifier for the 

subset evaluation. Since the size of the sample sets is 

fixed in advance for a given feature selection job, it 

can be regarded as constant. Therefore, t(s) depends 

only on the value of s.

We define the linearity property of classification 

algorithms and then the atomic operation.

 

Definition 1: When a classifier satisfies both in 

learning and recognition stages that t(s) is 

approximately equal to s
*t(1), we say that the 

classifier is approximately linear. 
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 We can easily prove that the popular classification 

algorithms such as MLP, SVM, and k-NN are 

approximately linear. The linearity assumption holds 

for k-NN classifiers, since the dominant operation is 

the distance calculation that is linear to the number of 

features. This assumption also holds for a neural 

network classifier, MLP, since the amount of 

computation by the forward classification and 

backward learning processes is proportional to the 

number of input nodes.

 

Definition 2: The evaluation of a single feature is 

called an atomic operation. The time required for the 

atomic operation is t(1) and it is referred to as the 

atomic time. We abbreviate the atomic time as α.

 

Note that given a specific character recognition 

problem with training and test sets, the atomic time 

is fixed to be a constant. So we can use the atomic 

time α as a unit in measuring the timing cost of a 

feature selection algorithm.

Now, we analyze the computation time of feature 

selection algorithms. Let us first analyze the greedy 

algorithms. Equation (5) shows the timing 

requirement for the rem and add operations. In this 

notation, the current size of X is s.
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As shown by Algorithm SFS in Section 1, the SFS 

repeats the add operation d times when it selects d 

features from D ones. So the time required by SFS 

can be formulated as Equation(6).
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The computation time of GA and ACO can be more 

easily analyzed. The time of ACO is αdTga since each 

generation evaluates one subset whose size is d. Tga 

is the number of total generations. The ACO requires 

αdNTaco where N is the number of ants and Taco is 

the number of total generations. [Table 1] 

summarizes the analysis. It is worth noting that the 

time for GA and ACO is independent on the original 

feature set size D. The greedy algorithms are 

influenced by the value of D, and the time becomes 

prohibitive for large D.

Note that we have no control on the timing 

requirement of SFS in (6). On the contrary, we can 

control the time of GA and ACO by changing the 

number of generations.

Table 1. Timing analysis of SFS, GA, and ACO

Algor
ithms

Time
(Dependent 

on D?)

User 
contr
ollabl
e?

Actual timing 
example*

SFS
α(Dd2/2+3Dd/2

-d3/3-d2)
(yes)

no
53.62 hours 
for d=64

167.73 hours 
for d=128

GA αdTga
(no) yes

Given 72 hours, 
Tga9579 for d=64 and 

4799 for d=128.

ACO αdNTaco
(no) yes 

Given 72 hours, 
Taco320 for d=64 

and 
160 for d=128.

* When D=256 and α=0.422 seconds (measured for the 
experiments in Section IV)
 

V. Experiments

1. Experimental Setup and Results
The experiments have been done using CENPARMI 

handwritten numeral database. It has 4,000 training 

and 2,000 test samples [13]. For the original feature 

set, we used DDD which has 256 features [14]. So in 

the given problem, D is 256. For the subset 
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evaluation, MLP was used. Its architecture was 

(1+d)-20-10 where three values represents the 

number of input, hidden, and output nodes, 

respectively. It was trained using error 

back-propagation algorithm and tested using the test 

set. The test accuracy was used as the evaluation 

result, i.e., the value of J(). The accuracy was 

calculated as a ratio of the number of correctly 

recognized samples to the total number of samples. 

No rejection was allowed.

Under these experimental conditions, the atomic 

time α was 0.422 second. (We used a Pentium 

processor with 3.4GHz and 2M cache memory. The 

main memory was 4G bytes.) The last column of 

[Table 1] shows the actual timing requirements. The 

SFS requires 168 hours to select 128 features. It is too 

time consuming to be used practically. (In the 

industrial applications, much bigger training set is 

usually used, eg, 100,000 samples.) The GA and ACO 

have the advantage of controllability of timing. 

Assuming 3 days of the computation time is given, 

we set the stopping-condition (line 8 of Algorithm 

GA and line 5 of Algorithm ACO) to quit the loop 

when the timer reaches 72 hours. The last column of 

[Table 1] shows the maximum generation when 3 

days are given.

The GA and ACO used the following parameters. 

For their stopping-condition, 72 hours were given.

 

GA: population size=30, mutation rate=0.1, q for   

      rank-based selection=0.25

ACO: population size=30, α=1, β=0 (ignoring η    

      component in Equation (1)), ρ (evaporation   

      rate)=0.06, [τmin,τmax]=[0.2, 20.0]

ACO with the selective evaluation: r=0.98,        

      lower-bound=0.3

[Table 2] shows the recognition accuracies obtained 

by SFS, GA, and ACO. Note that SFS used 54 and 

168 hours for d=64 and 128, respectively. The GA and 

ACO obtained the performances using 72 hours for 

both d=64 and 128. For an objective comparison, we 

ran GA and ACO 6 times independently, and their 

average, minimum, and maximum were recorded in 

[Table 2].

[Table 2] illustrates that ACO produced better 

solutions than GA. It also shows that the selective 

evaluation scheme improved the ACO in a significant 

amount. The scheme increased the average accuracies 

by 0.18% and 0.23% for d=64 and 128, respectively. 

These amounted to the error reduction ratio, 6.55% 

and 10.45%.

The last row is the accuracy when we used the 

original feature set. It was 97.30%. When we selected 

half the original set, the accuracy was improved to 

98.03% (error reduction ratio 27.04%). So we can say 

that in this problem instance, we obtained both the 

compact classifier (about twice faster than the 

original classifier) and the better accuracy. The 

CENPARMI training set size is 4000, which is 

believed to be small, considering the large variations 

of handwriting style. (The database was collected 

from real-world mail pieces.)

Table 2. Comparison of accuracies of SFS, GA, 
and ACO (Subset evaluation by MLP 
classifier, Unit=%)

Subset 
size
(d)

SFS GA
ACO

Without 
selective  
evaluation

With 
selective   
evaluation

64 
(0.25D) 97.25

97.12
(96.75,
97.30)

97.25
(97.10,
97.45)

97.43
(97.35,
97.50)

128 
(0.5D) 97.50

97.66
(97.50,
97.80)

97.80
(97.70,
97.85)

98.03
(98.00,
98.05)

256
(D) 97.30

* For GA and ACO, average (minimum, maximum) were 
recorded for 6 independent runs.
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2. Discussions
It is difficult to explain rigorously why the selective 

evaluation is superior. Here we will explain intuitively 

only, not in a rigorous manner. Our statistical 

observation showed that the selected ants were really 

the elite (i.e., the best ant), but sometimes they were 

not. However, it was more probable to be elite. So the 

selective evaluation scheme still works to evolve 

towards better solutions. Since the selective 

evaluation can execute more generations, it is 

probable to find better solutions than conventional 

ACO. Additionally the cases in which the selected ant 

is not elite perturb the current graph information, so 

it might be advantageous in escaping from the 

premature convergence.

VI. Conclusions  

This paper proposed a feature selection algorithm 

for the pattern recognition. The ACO with the newly 

proposed selective evaluation scheme was the best 

among greedy algorithm, GA, and ACO. It consumed 

a reasonable computation time. One of its practical 

advantages is that its timing is controllable. In other 

words, we can say that, if the algorithm is given 

more computation time, they might find out better 

solutions than the ones in Table 2. In future work, we 

will analyze and explain in a more rigorous manner 

why the selective evaluation is superior. 
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