• Title/Summary/Keyword: ACO algorithm

Search Result 66, Processing Time 0.029 seconds

A Hybrid Genetic Ant Colony Optimization Algorithm with an Embedded Cloud Model for Continuous Optimization

  • Wang, Peng;Bai, Jiyun;Meng, Jun
    • Journal of Information Processing Systems
    • /
    • v.16 no.5
    • /
    • pp.1169-1182
    • /
    • 2020
  • The ant colony optimization (ACO) algorithm is a classical metaheuristic optimization algorithm. However, the conventional ACO was liable to trap in the local minimum and has an inherent slow rate of convergence. In this work, we propose a novel combinatorial ACO algorithm (CG-ACO) to alleviate these limitations. The genetic algorithm and the cloud model were embedded into the ACO to find better initial solutions and the optimal parameters. In the experiment section, we compared CG-ACO with the state-of-the-art methods and discussed the parameter stability of CG-ACO. The experiment results showed that the CG-ACO achieved better performance than ACOR, simple genetic algorithm (SGA), CQPSO and CAFSA and was more likely to reach the global optimal solution.

An Ant Colony Optimization Approach for the Maximum Independent Set Problem (개미 군집 최적화 기법을 활용한 최대 독립 마디 문제에 관한 해법)

  • Choi, Hwayong;Ahn, Namsu;Park, Sungsoo
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.33 no.4
    • /
    • pp.447-456
    • /
    • 2007
  • The ant colony optimization (ACO) is a probabilistic Meta-heuristic algorithm which has been developed in recent years. Originally ACO was used for solving the well-known Traveling Salesperson Problem. More recently, ACO has been used to solve many difficult problems. In this paper, we develop an ant colony optimization method to solve the maximum independent set problem, which is known to be NP-hard. In this paper, we suggest a new method for local information of ACO. Parameters of the ACO algorithm are tuned by evolutionary operations which have been used in forecasting and time series analysis. To show the performance of the ACO algorithm, the set of instances from discrete mathematics and computer science (DIMACS)benchmark graphs are tested, and computational results are compared with a previously developed ACO algorithm and other heuristic algorithms.

DNA Computing Adopting DNA Coding Method to solve Maximal Clique Problem (Maximal Clique Problem을 해결하기 위한 DNA 코딩 방법을 적용한 DNA 컴퓨팅)

  • Kim, Eun-Kyoung;Lee, Sang-Yong
    • The KIPS Transactions:PartB
    • /
    • v.10B no.7
    • /
    • pp.769-776
    • /
    • 2003
  • DNA computing has used to solve MCP (Maximal Clique Problem). However, when current DNA computing is applied to MCP. it can't efficiently express vertices and edges and it has a problem that can't look for solutions, by misusing wrong restriction enzyme. In this paper we proposed ACO (Algorithm for Code Optimization) that applies DNA coding method to DNA computing to solve MCP's problem. We applied ACO to MCP and as a result ACO could express DNA codes of variable lengths and generate codes without unnecessary vertices than Adleman's DNA computing algorithm could. In addition, compared to Adleman's DNA computing algorithm, ACO could get about four times as many as Adleman's final solutions by reducing search time and biological error rate by 15%.

DNA Computing Adopting DNA coding Method to solve Traveling Salesman Problem (Traveling Salesman Problem을 해결하기 위한 DNA 코딩 방법을 적용한 DNA 컴퓨팅)

  • Kim, Eun-Gyeong;Yun, Hyo-Gun;Lee, Sang-Yong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.1
    • /
    • pp.105-111
    • /
    • 2004
  • DNA computing has been using to solve TSP (Traveling Salesman Problems). However, when the typical DNA computing is applied to TSP, it can`t efficiently express vertices and weights of between vertices. In this paper, we proposed ACO (Algorithm for Code Optimization) that applies DNA coding method to DNA computing to efficiently express vertices and weights of between vertices for TSP. We applied ACO to TSP and as a result ACO could express DNA codes which have variable lengths and weights of between vertices more efficiently than Adleman`s DNA computing algorithm could. In addition, compared to Adleman`s DNA computing algorithm, ACO could reduce search time and biological error rate by 50% and could search for a shortest path in a short time.

Satellite Customer Assignment: A Comparative Study of Genetic Algorithm and Ant Colony Optimization

  • Kim, Sung-Soo;Kim, Hyoung-Joong;Mani, V.
    • Journal of Ubiquitous Convergence Technology
    • /
    • v.2 no.1
    • /
    • pp.40-50
    • /
    • 2008
  • The problem of assigning customers to satellite channels is a difficult combinatorial optimization problem and is NP-complete. For this combinatorial optimization problem, standard optimization methods take a large computation time and so genetic algorithms (GA) and ant colony optimization (ACO) can be used to obtain the best and/or optimal assignment of customers to satellite channels. In this paper, we present a comparative study of GA and ACO to this problem. Various issues related to genetic algorithms approach to this problem, such as solution representation, selection methods, genetic operators and repair of invalid solutions are presented. We also discuss an ACO for this problem. In ACO methodology, three strategies, ACO with only ranking, ACO with only max-min ant system (MMAS), and ACO with both ranking and MMAS, are considered. A comparison of these two approaches (i,e., GA and ACO) with the standard optimization method is presented to show the advantages of these approaches in terms of computation time.

  • PDF

Code Optimization in DNA Computing for the Hamiltonian Path Problem (해밀톤 경로 문제를 위한 DNA 컴퓨팅에서 코드 최적화)

  • 김은경;이상용
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.4
    • /
    • pp.387-393
    • /
    • 2004
  • DNA computing is technology that applies immense parallel castle of living body molecules into information processing technology, and has used to solve NP-complete problems. However, there are problems which do not look for solutions and take much time when only DNA computing technology solves NP-complete problems. In this paper we proposed an algorithm called ACO(Algorithm for Code Optimization) that can efficiently express DNA sequence and create good codes through composition and separation processes as many as the numbers of reaction by DNA coding method. Also, we applied ACO to Hamiltonian path problem of NP-complete problems. As a result, ACO could express DNA codes of variable lengths more efficiently than Adleman's DNA computing algorithm could. In addition, compared to Adleman's DNA computing algorithm, ACO could reduce search time and biological error rate by 50% and could search for accurate paths in a short time.

Development of the Shortest Path Algorithm for Multiple Waypoints Based on Clustering for Automatic Book Management in Libraries (도서관의 자동 도서 관리를 위한 군집화 기반 다중경유지의 최단 경로 알고리즘 개발)

  • Kang, Hyo Jung;Jeon, Eun Joo;Park, Chan Jung
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.1
    • /
    • pp.541-551
    • /
    • 2021
  • Among the numerous duties of a librarian in a library, the work of arranging books is a job that the librarian has to do one by one. Thus, the cost of labor and time is large. In order to solve this problem, the interest in book-arranging robots based on artificial intelligence has recently increased. In this paper, we propose the K-ACO algorithm, which is the shortest path algorithm for multi-stops that can be applied to the library book arrangement robots. The proposed K-ACO algorithm assumes multiple robots rather than one robot. In addition, the K-ACO improves the ANT algorithm to create K clusters and provides the shortest path for each cluster. In this paper, the performance analysis of the proposed algorithm was carried out from the perspective of book arrangement time. The proposed algorithm, the K-ACO algorithm, was applied to a university library and compared with the current book arrangement algorithm. Through the simulation, we found that the proposed algorithm can allocate fairly, without biasing the work of arranging books, and ultimately significantly reduce the time to complete the entire work. Through the results of this study, we expect to improve quality services in the library by reducing the labor and time costs required for arranging books.

A Routing Algorithm for Wireless Sensor Networks with Ant Colony Optimization (개미 집단 최적화를 이용한 무선 센서 네트워크의 라우팅 알고리즘)

  • Jung, Eui-Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.12 no.5
    • /
    • pp.131-137
    • /
    • 2007
  • Recently, Ant Colony Optimization (ACO) is emerged as a simple yet powerful optimization algorithm for routing and load-balancing of both wired and wireless networks. However, there are few researches trying to adopt ACO to enhance routing performance in WSN owing to difficulties in applying ACO to WSN because of stagnation effect. In this paper, we propose an energy-efficient path selection algorithm based on ACO for WSN. The algorithm is not by simply applying ACO to routing algorithm but by introducing a mechanism to alleviate the influence of stagnation. By the simulation result, the proposed algorithm shows better performance in data propagation delay and energy efficiency over Directed Diffusion which is one of the outstanding schemes in multi-hop flat routing protocols for WSN. Moreover, we checked that the proposed algorithm is able to mitigate stagnation effect than simple ACO adoption to WSN.

  • PDF

A Novel Hybrid Intelligence Algorithm for Solving Combinatorial Optimization Problems

  • Deng, Wu;Chen, Han;Li, He
    • Journal of Computing Science and Engineering
    • /
    • v.8 no.4
    • /
    • pp.199-206
    • /
    • 2014
  • The ant colony optimization (ACO) algorithm is a new heuristic algorithm that offers good robustness and searching ability. With in-depth exploration, the ACO algorithm exhibits slow convergence speed, and yields local optimization solutions. Based on analysis of the ACO algorithm and the genetic algorithm, we propose a novel hybrid genetic ant colony optimization (NHGAO) algorithm that integrates multi-population strategy, collaborative strategy, genetic strategy, and ant colony strategy, to avoid the premature phenomenon, dynamically balance the global search ability and local search ability, and accelerate the convergence speed. We select the traveling salesman problem to demonstrate the validity and feasibility of the NHGAO algorithm for solving complex optimization problems. The simulation experiment results show that the proposed NHGAO algorithm can obtain the global optimal solution, achieve self-adaptive control parameters, and avoid the phenomena of stagnation and prematurity.

Parameters Influencing the Performance of Ant Algorithms Applied to Optimisation of Buffer Size in Manufacturing

  • Becker, Matthias;Szczerbicka, Helena
    • Industrial Engineering and Management Systems
    • /
    • v.4 no.2
    • /
    • pp.184-191
    • /
    • 2005
  • In this article we study the feasibility of the Ant Colony Optimisation (ACO) algorithm for finding optimal Kanban allocations in Kanban systems represented by Stochastic Petri Net (SPN) models. Like other optimisation algorithms inspired by nature, such as Simulated Annealing/Genetic Algorithms, the ACO algorithm contains a large number of adjustable parameters. Thus we study the influence of the parameters on performance of ACO on the Kanban allocation problem, and identify the most important parameters.