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Abstract. In this article we study the feasibility of the Ant Colony Optimisation (ACO) algorithm for finding 
optimal Kanban allocations in Kanban systems represented by Stochastic Petri Net (SPN) models. Like other 
optimisation algorithms inspired by nature, such as Simulated Annealing/Genetic Algorithms, the ACO 
algorithm contains a large number of adjustable parameters. Thus we study the influence of the parameters on 
performance of ACO on the Kanban allocation problem, and identify the most important parameters. 
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1.  INTRODUCTION 

Many companies implement the Just-In-Time (JIT) 
philosophy in order to survive amongst the competitors. 
The basic idea of the JIT philosophy is to produce only 
what is needed, that means minimising the stock and 
inventory, and letting the production be triggered by the 
current demands. 

One way to control the material flow in a JIT 
manufacturing environment consisting of several 
manufacturing cells is the use of Kanbans (Sugimori et 
al. 1977), first used in Japan, Kanban meaning ‘card’. 
These cards serve as production orders and also deter-
mine the buffer size in each manufacturing cell. The 
information flow in such a manufacturing line consisting 
of individual manufacturing cells is directed upstream. 
That means, a demand at the last production cell triggers 
a production order only in the cell before. If there is the 
desired part on stock, then the order can be fulfilled, 
otherwise the part is manufactured. This philosophy is 
called ‘pull-production’ (parts are pulled from the cell 
before only when there is a demand) as opposed to 
‘push-production’ where raw parts are pushed into the 
first manufacturing cell independently of the demands 

(production to stock). A crucial point in the planning and 
design of a manufacturing line is to determine the num-
ber of Kanbans per cell. The higher the number of Kan-
bans, the higher the achievable throughput usually will 
be, but also the inventory/work in process (WIP) and the 
corresponding costs increase. Thus an optimal Kanban 
allocation to cells has to be found, that maximises a goal 
function that takes the costs (production, inventory, 
transport costs and losses due to demands that could not 
be satisfied) and the gain (caused by sold products) of 
an individual Kanban allocation into account. The so-
called Kanban allocation problem has been approached 
by different heuristic optimisation algorithms in the past, 
amongst them Genetic Algorithms and Hill-climbing 
(Szczerbicka et al., 1998). Since there is no universal 
best optimisation algorithm (Wolpert and McReady, 
1997), it is important to assess the quality of optimisa-
tion algorithms for specific problems. Ant Colony Op-
timisation (ACO) (Dorigo and Gambardella, 1997) is a 
new heuristic optimisation algorithm, that has not been 
applied to the Kanban allocation problem yet. Regarding 
application in manufacturing environments, up to now, 
ACO has mainly been used for scheduling optimisation 
(Price et al. and Kumar et al., 2003). Since the ACO is 
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particularly applicative for optimisation problems with 
an integer search space it is interesting to study the ap-
plication of ACO to the Kanban allocation problem. 
This has been done in Becker et al. (2004). The follow-
ing text is an extension of the afore mentioned previous 
work. First, the ACO algorithm is explained in the next 
section, then we introduce the manufacturing system 
and the optimisation problem (namely the Kanban allo-
cation problem). In section 4 it is shown how the ACO 
algorithm can be applied to find solutions of the Kanban 
allocation problem. Finally, results about the perform-
ance of the ACO algorithm, the quality of found solu-
tions and the dependency of both on the parameters of 
the ACO algorithm are presented and a conclusion is 
drawn. 

2.  ANT COLONY OPTIMISATION 

In Dorigo and Gambardella the Ant Colony Optimi-
sation algorithm is introduced (developed from the Ant 
System (AS) by Dorigo, 1992). The ACO is inspired by 
the mechanism with which natural ants find shortest 
paths between a food source and their nest.  

Roughly, this works as follows: Initially, ants ran-
domly find different paths of different lengths. An indi-
vidual ant leaves a trace of pheromone where it is walk-
ing. A pheromone is a kind of scent which is left for the 
orientation of other ants. Ants prefer paths with a higher 
pheromone concentration with a higher probability. 
Pheromone is also subject to evaporation. Thus after 
completing a tour to a food source and back, the phero-
mone of the longer paths has had more time to evaporate 
and thus has a weaker concentration compared to shorter 
paths. When ants are at a decision point at which differ-
ent paths start, they choose with higher probability a 
path with a higher concentration of pheromone. By us-
ing this path the pheromone concentration is being in-
creased again. This mechanism reinforces the phero-
mone concentration on short paths between two decision 
points. A complete short path can be constructed by 
adding the short paths between all decision points. In the 
end a shortest path has been established from the start-
ing point to the end and is used by the majority of ants. 

The ant algorithm can be illustrated easily be a 
typical application, the Travelling Salesman Problem 
(TSP). There a salesman has to visit a number of cities 
in an order that minimises the overall travel distance. 
The mathematical representation is a graph with the N 
cities as nodes, and weighted edges between all cities. 
The weight of an edge between cities i and i represents 
the distance d(i,j) between these cities. The ant approach 
to the TSP works as follows:  
● Initial step: As first step, let a number of ants find 

random tours. Each ant leaves an amount of pheromone 

on the edges belonging to the tour (local pheromone 
update rule). This amount is proportional to the length 
of the tour. Additionally the best tour found up to now 
(or alternatively during one iteration) is marked with 
some amount of extra pheromone (global pheromone 
update). 

● Iteration step: A fraction of the pheromone is evapo-
rated. The evaporation speed is an adjustable parame-
ter. Let again find a number of tours by a swarm of 
ants. Now, each ant decides at each node which node 
to choose next. Ants prefer shorter edges and edges 
with a higher pheromone concentration in a probabil-
istic manner. Adjustable parameters are the weights 
with which heuristic information (here: the length of 
path) and the amount of pheromone influence the 
probabilistic decision. 

Several common termination conditions can be 
used, such as a pre-determined number of generations, 
or if there is no improvement of the solution over a 
number of iterations. In the next section the manufactur-
ing system to be optimised is introduced. 

3.  THE KANBAN MANUFACTURING  
SYSTEM 

As mentioned before the Kanban mechanism is 
used in a JIT environment where major principles are 
production on demand and keeping inventory low. The 
Kanban mechanism is a way to implement a pull-
production (production is triggered by demand) and 
controlling the inventory. Kanban systems are organised 
in several cells. The Kanbans control the inventory in 
each cell. Each part that enters a cell i needs to find a 
free Kanban at the bulletin board Bi that is then attached 
to the part (cf. Figure 1). 

Then the part is stored in the input buffer IBi and 
waits for being processed at machine Mi. Then the part 
waits in the output buffer OBi until the next cell issues a 
demand (in form of a free Kanban in that cell). When a 
part leaves a cell, the Kanban is detached from the part 
and placed in the bulletin board, and serves as produc-
tion order to the previous cell. By this mechanism the 
number of Kanbans in a cell determines the maximum 
inventory of this cell. The Kanban allocation problem 
deals with assigning an optimal number of Kanbans to 
each cell. The more Kanbans circulate in each cell, the 
more throughput is achievable. The negative effect of 
many Kanbans is an increase in maximum as well as 
mean inventory that leads to larger storage costs and 
more inflexibility. Finding the optimal number of Kan-
bans for each cell with respect to a cost function that 
calculates the balance of gain by throughput of produced 
parts on the one hand and costs of production on the 
other hand is called the Kanban allocation problem.  
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Stochastic Petri nets (Marsan et al., 1995) have 
proven to be an adequate mathematical modeling for-
malism for Kanban systems, since Petri nets are well 
suited to represent synchronisation and split operations 
(used for matching/detaching of parts and Kanbans). 
Petri nets can by analysed by using linear algebra tech-
niques, solution of the underlying Markov chain as well 
as simulation. 

3.1  Petri net model of the Kanban manufacturing 
system 

In this section we present the Kanban system that 

we use for studying the applicability of the ACO algo-
rithm on the Kanban allocation problem.  

Machine

OBi-1

Kanban of cell i

Kanban of cell i+1Kanban of cell i-1

Part

Mi

OBi

Bi Bi+1

IBi IBi+1

 
 

Figure 1. Flow of parts and Kanban in the system 
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Figure 2. PN model of the four-stage Kanban system 

A detailed or formal introduction of Petri nets is out 
of scope here. Only some informal idea is given here, 
for more information see the relevant literature, e.g. in 
(Marsan et al., 1995). A Petri net consists of passive 
elements (called places, drawn as circles) in which ob-
jects can be placed (called tokens, drawn as black dots 
inside places) and active elements (called transitions, 
drawn as rectangles) that can move tokens along arcs 
from one place to another. A transition can model a time 
span that is needed to move a token (unfilled rectangle) 
or a mere logical, timeless operation (filled rectangle). 
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Transitions can also model conditions such as synchronisa-
tion, when two or more arcs lead from places (represent-
ing the conditions) to one transition (that is executed if 
all conditions are fulfilled). Two or more arcs leading away 
from one transition model a split operation. The system 
(see Figure 2) consists of four manufacturing cells. In 
each cell a number of containers with Kanbans attached 
circulates, this number is represented by the initial num-
ber of tokens in places Buffer1, Buffer2, Buffer3, Buffer4. 
The number of processed parts in each cell is counted in 
places Prod1, ..., Prod4. Stochastic demands are gener-
ated by transition T18. Fulfilled demands that contribute 
to the profit are counted in place sold while demands 
that could not be fulfilled and lead to a loss are counted 
in place loss.  

3.2  Transient analysis 

The Kanban system has been analysed by conduct-
ing a stochastic simulation with confidence level of 95 
percent. The (partly stochastic) delays of single tasks in 
the system were in the order of minutes, the simulation 
covered 24 hours of operation. The simulation yields the 
performance parameters that are connected to WIP, ful-
filled and lost demands, delay and transport costs (see 
Table 1) that will be needed in the cost function later. 

 
Table 1. Performance measures calculated from the simu-

lation model 

Parameter Explanation 
Ai produced amount in cell i 
Bi change of WIP in cell i 
Ci mean WIP in cell i 
Di number of transports between cell i and cell j 
E number of lost demands (because of reaching the 

time limit) 
F demands not yet met 
G mean delay of demands 

4.  APPLICATION OF ACO TO THE KAN-
BAN ALLOCATION PROBLEM 

In this section the Kanban allocation problem is 
reformulated, so that it is accessible to the ACO algo-
rithm. The Kanban allocation problem needs to be rep-
resented by a graph with one start node where the ants 
start their tours. One valid Kanban allocation corre-
sponds to a path through the graph ending at a final node. 
These considerations lead to the following problem 
representation in Figure 3 (Example for a three stage 
Kanban system with a maximum of three Kanbans at 
each stage). 

E
End
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2
Buffer1
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Start

31

31

321

 
Figure 3. Problem representation for ACO 

 
The ants start at node S. The choice of the next 

node determines the number of Kanbans in the first 
stage. From each of this nodes, one node of the next 
level can be chosen, again representing the number of 
Kanbans for this stage. This continues, until the ants 
reach the final node E. Each tour through this graph 
represents a valid Kanban allocation. Additionally a 
heuristic information (similar to the distance in the TSP 
problem) is needed by the ACO algorithm. We use the 
function  

1( )j
j j

b
b l

η =
⋅

      (1) 

to describe the heuristic information, where bj are the 
number of Kanbans to be chosen and lj is the storage 
cost per Kanban (for the detailed use of the heuristic 
function η cf. one of the original papers e.g. Dorigo et 
al. 1996). With this function lower numbers of Kanbans 
are heuristically preferred  (in the same manner in that 
ants heuristically tend to choose the shorter path at a 
decision point). Using solely the heuristic information 
(disregarding the pheromone information) leads to a 
greedy algorithm. 

4.1  Basic parameters 

Since we want to study the effect of a single pa-
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rameter on the quality of the found solution and on the 
performance of ACO, we need a basic setting of pa-
rameters. Table 2 shows all relevant parameters, an ex-
planation and the value in the basic setting. When study-
ing the effect of one parameter, the others are kept con-
stant. 

 
Table 2. Basic parameters of ACO 

Name meaning init.value 

N number of ants 5 

g number of generations 700 

0τ  initialisation of pheromone 0.5 

α  weight of pheromone on  
decision 0.5 

β  weight of heuristic data on 
decision 0.5 

0q  degree of random choice at  
decision point 0 

Q amount of pheromone to be  
deposited along a tour 2 

ρ  percentage of pheromone  
evaporation during one step 0.95 

 

4.2  Cost function 

The cost or goal function is used in an optimisation 
algorithm to rate the quality of a found solution. The 
optimisation algorithm tries to find a solution that 
maximises or minimises the value of the goal function. 
The goal function that is to be optimised by the ACO 
algorithm calculates the costs that a given Kanban 
allocation generates during the production period. 
These costs comprise costs for raw material, transport 
costs, storage cost, production cost, and penalty costs for 
delay of demands and demands that could not be satis-
fied. The production rate is triggered by external de-
mands arriving in a stochastic manner according to an 
exponential distribution. The goal function used here is 
equation 2: 

1 0
1

( ( ) ( ) )
W

i i i i i pi i i i mi
i

Z A k A f t B k t C l D t
=

= ⋅ + + + + + ⋅ + ⋅∑  

( ) op sE F k G k+ + + ⋅                 (2) 

 
The meaning of the variables of the different costs 

are found in Table 3, while the performance measures 
needed from the simulation model have already been 
mentioned in Table 1. 

Table 3. Parameters of the cost function 

cost Explanation 

0k  cost for raw material 

if  production cost in cell I 

ik  sum of cost of product up to cell i 

pit  transport cost in cell I 

il  storage cost in cell I 

mit  transport cost between cell i and j 

opk  cost for demands not met 

sk  cost for delay of demands 

5.  RESULTS 

In order to assess the effect of the parameters of 
ACO on the performance of the algorithm, a relatively 
small Kanban system has been chosen. Thus it is possi-
ble to do an exhaustive search and determine the global 
optimum, so that the results of ACO can be rated and 
compared to the global optimum. Figure 4 shows the 
number of solutions (y-axis) within a certain cost inter-
val (x-axis). Overall 10000 configurations have been 
evaluated (four cells with a maximum of ten Kanbans 
allowed.). 
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Figure 4. Costs of all possible solutions 

 
The best configuration is (1,3,3,4) (in accordance 
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to the theoretical results found in Tayur 1992). In the 
following subsections we discuss the influence of sev-
eral adjustable parameters of the ACO algorithm on the 
quality of the solution and on the speed of convergence. 
The parameters and their meaning have already be 
shown in table 2. We will not present all used formulae 
where these parameters are needed. We refer the inter-
ested reader to the original literature e.g. in Dorigo and 
Gambardella 1997, since we stick to the denotation of 
the parameters there. Curves display moving averages of 
mean costs from 20 runs over 700 generations.  

5.1  Weight of pheromone information α  

Figure 5 shows the mean quality of each generation 
for different values of α (in the following referred to as 
‘generation mean’), while Figure 6 shows the mean qual-
ity of the best solution found up to a certain generation 
(in the following referred to as ‘global best’). Low val-
ues of α (α = 0; 0.1) let the pheromone information 
nearly be ignored so that mainly the heuristic informa-
tion and a certain amount of randomness is used. With 
this settings the mean quality of the found solutions does 
not improve. However, both very good and very bad 
solutions are found, resulting only in a poor or medium 
‘generation mean’ but in a very good ‘global best’ solu-
tion. Medium values of α (α = 0.5; 0.9; 1.0) lead to 
rapid improvement of the mean generation quality. The 
higher α  the earlier the improvement stops at a subop-
timal solution, reaching only a poor ‘global best’. The 
highest value α = 5 shows the fastest convergence to-
wards a good generation mean. However the algorithms 
gets stuck very fast and finds only a poor ‘global best’ 
solution. A good compromise can be achieved by using 
values between 0.1 and 0.5. This configuration shows 
the fastest improvement of the ‘global best’ (a near op-
timal solution at approx. 250 generations), and with 
α = 0.1 the solution converges against the optimum.  

 
 

   
Figure 5. Mean costs of best solution in one generation 

dependent on α  
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Figure 6. Mean costs of best solution of all generations 
dependent on α  

5.2  Pheromone persistence ρ  

ρ  determines the percentage of pheromone that is 
left after the evaporation step. The higher the value of 
ρ  the slower pheromone evaporates. Figure 7 shows 
that for all values of ρ  a fast improvement of the best 
solution is achieved. But only for higher values of ρ  
the convergence last long enough to reach the optimum. 
This is a clear hint that the usage of the knowledge of 
predecessors contributes to the success of the optimisa-
tion. 

 

Figure 7. Mean costs of best solution in all generations 
dependent on ρ  

5.3  Number of ants N  

Not surprisingly the more ants are searching the  
better is the found solution, see figure 8. On the negative 
side more ants need more (time-consuming) model 
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evaluations. 

ote however that not only the quality of the best so-
lutio

5.4  Weight of heuristic information

Figure 8. Mean costs of best solution in all generations 
dependent on number of ants 

 
N
n is better with more ants, but also the convergence 

towards this solution is faster. Thus it seems more appro-
priate to use more ants and lesser iterations instead of let-
ting few ants search over a greater number of generations. 

β  

Parameter β  determines the influence of the heu-
ristic information on the decisions of the ants. In our 
example the heuristic information mainly consists of the 
knowledge that more buffer space induces more costs. 
This means that with a higher value of β  the ants tend 
to avoid Kanban allocations which use relatively high 
amount of buffer space. 

In Figure 9 it can be 

a 

observed that the mean quality of 
the found Kanban allocation is better for low values of β . 

This is true for the found Kanban allocatio  in n 
early generations as well as in late generations. There-
fore it seems reasonable to use low values for β , since 
the heuristic knowledge usually is only incomp te and 
probably neglects some more complex connections be-
tween other factors. 
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Figure 9. Mean costs of best solution in all genera ons ti

dependent on β  

5.5  Weight of heuristic information Q 

Parameter Q determines the influence of the best 
ant i

nd 
solu

mean  
cost 

3 n one generation. It determines how many addi-
tional pheromone the best ant adds to the found path. 

Figure 10 shows how the quality of the best fou5 
8 10 tion evolves over the generations, depending on the 

value of Q. It can be seen that the value of Q should be 
well balanced to obtain optimal performance of the ant 
algorithm. Both high and low values result in approxi-
mately the same found quality of the solution, only a 
medium value (Q=5) lets the algorithm perform signifi-
cantly better. 
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Figure 10. Mean costs of best solution in all gener ons 

6.  CONCLUSION 

In this work we studied the applicability of the 
ACO

ati
dependent on Q 

 algorithm and its parameters on the Kanban allo-
cation problem. ACO shares a difficulty with most more 
sophisticated heuristic optimisation algorithms, that is to 
determine the right setting of the numerous parameters 
of the algorithm in order to work properly on the actual 
problem (Grefenstette, 1986). In this work we identified 
the impact of some parameters on the result. The good 
settings for ρ  indicate that the pheromone should not 
evaporate too fast. The interpretation of this is, that the 
effect of learning from previous generations is important 
for a successful optimisation. However, also the heuris-
tic information, that is the influence of factual knowl-
edge, cannot be neglected but also should not be overes-
timated. The parameter studies of

 

α and β showed that a 
good balance between heuristic and pheromone informa-
tion produces best results. The influence of the best ant 
in one generation can improve the performance of the 
algorithm, however it is difficult to choose the right 
value for the parameter Q. Regarding the number of ants 
to be used it can be stated that a higher number of indi-
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viduals achieve a higher quality of the solution in a cor-
porate effort. Even if we consider that a higher number 
of ants result in a higher number of model evaluations 
(= simulation runs) per generation, we observe that the 
higher convergence of the solution against the optimum 
usually compensates for this. In future work, dynamic 
parameter adaptation could overcome the problem of 
having to find good parameter setting at the beginning. 
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