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The ant colony optimization (ACO) is a probabilistic Meta-heuristic algorithm which has been developed in 
recent years. Originally ACO was used for solving the well-known Traveling Salesperson Problem. More 
recently, ACO has been used to solve many difficult problems. In this paper, we develop an ant colony 
optimization method to solve the maximum independent set problem, which is known to be NP-hard. In this 
paper, we suggest a new method for local information of ACO. Parameters of the ACO algorithm are tuned by 
evolutionary operations which have been used in forecasting and time series analysis. To show the performance 
of the ACO algorithm, the set of instances from discrete mathematics and computer science (DIMACS) 
benchmark graphs are tested, and computational results are compared with a previously developed ACO 
algorithm and other heuristic algorithms.
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1. Introduction

In recent years, Maximum Independent Set 
Problem (MISP) has attracted much attention be-
cause of its applicability on many real world pro-
blems. This problem is relevant for many theoret-
ical research areas and practical applications. As an 
example, we mention the clustering problem for 
peer to peer mobile wireless networks that can be 
easily reduced to the problem of finding a max-
imum independent set of nodes in the network 
(Gerla and Tsai, 1995). In many cases, exact algo-
rithms designed to solve the problem to optimality 

cannot guarantee a reasonable computation time. 
Therefore, to take advantage in a computation time, 
heuristic approaches can be applied for the MISP. 

One of the most powerful heuristic algorithms is 
the Ant Colony Optimization (ACO). Since the first 
release of ACO in 1997 (Dorigo and Gambardella, 
1997), ACO attracted much interest due to its co-
operative learning mechanism and a converging pro-
cess to a good solution. More recently, ACO has 
been used to solve many difficult problems such as 
Quadratic Assignment Problem (Gambardella et al., 
1999), Data Mining (Parpinelli et al., 2002), Vehicle 
Routing Problem (Gambardella et al., 1999), etc. In 
these approaches, ACO derived good performances 
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compared to other algorithms. However, so far, 
not many research efforts are found on applying 
ACO for MISP (Li and Xu, 2003). So, in this pa-
per, improved ACO for MISP will be shown, and 
the performance will be demonstrated.

This paper is organized as follows. In Section 2, 
overview of ACO is provided with an explanation 
on how it was applied to solve the Traveling 
Salesman Problem (TSP). Section 3 is devoted to 
explain how the proposed ACO can be used to 
solve the MISP. In Section 4, to show the per-
formance of the proposed ACO, computational ex-
periments are performed on discrete mathematics 
and theoretical computer science (DIMACS) benc-
hmarks. Finally, Section 5 contains conclusions and 
some directions on future research. 

2.  Background about the Maximum 
Independent Set Problem

We consider a graph      with vertex set 
V and edge set E and its complement, 
  where    ∈   ∈  ≠. An 
independent set (or vertex packing or stable set) 
is a vertex set whose elements are pairwise non-
adjacent, i.e., a subset  ⊂   is independent if 
for all  , ∈  , the edge ( ) ∉  . A max-
imum independent set is an independent set of 
maximum cardinality. 

The integer programming formulation of the max-
imum independent set problem is given as fol-
lows:

 
 

 

,

s. t.     ≤ ,     ∀ ∈ ,

∈ ,        ⋯   .

Clearly, exact algorithms and heuristic algorithms 
have both strong points and weak points. Exact 
algorithms can find the maximum independent set. 
On the other hand, heuristic algorithms usually 
find the feasible solutions more quickly than exact 
algorithms. However the quality of the solutions 
may not be good.

3.  Overview of Ant Colony 
Optimization

The ACO has been inspired by the observation of 
real ants’ manner of finding a shortest path. The 
art of finding a shortest path between a food and 
a nest lies in a cooperative learning mechanism 
among the ants. For example, if a shortest path 
for food is blocked by a sudden obstacle, then 
lots of new paths need to be explored by the ants. 
When a first group of ants has arrived, paths will 
be chosen randomly, and the paths will be marked 
by a certain chemical substance, called pheromone. 
Since pheromone will be evaporated as time pass-
es, a longer path will be marked with less pher-
omone and a shorter path will be marked with 
more pheromone. Since the pheromone lures the 
ants, when a next group of ants has arrived, a path 
marked with a higher level of pheromone will be 
explored more with a high probability. There-
fore, a shorter path will be visited further by the 
ants, and this cooperative behavior of the ants 
will lead to a new shortest path.

This observation of real ants leads to a new 
heuristic algorithm, ACO. ACO was first proposed 
to address the famous traveling salesman problem 
(TSP). Implementation of the ACO for solving 
TSP can be addressed briefly as follows. First, M 
artificial ants are placed on M different cities, 
which are chosen randomly. Next, to construct a 
tour, unvisited cities need to be chosen by each 
ant. This selection is based on a certain proba-
bility, whose calculation is a function of the so- 
called local and global information from the cur-
rent city. Note that, due to the probabilistic se-
lection of the next unvisited city, premature con-
vergence can be avoided. Let local information, 
 be the reciprocal of distance from the current 
city i to the next unvisited city j. Use of the re-
ciprocal of distance helps to find an acceptable 
solution in an early stage. Similarly, let global in-
formation,  be the amount of pheromone on edge 
(i, j) which is connection city i and city j from 
the precedent ants’ tours. At the initial tour,  
takes some positive constant, which will be de-
noted by  . Global information will be used for 
generating a positive feedback on good solution. 
Now, for the next unvisited city, say j, the se-
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lection possibility of mth ant can be given by



∑∈  

 


∀ ∈  ,

∈   ∖ (1)

where   is the set of already visited cities by 
mth ant, M is the set of the ants. And ≥  
and ≥  denote the relative importance. This 
city visiting procedure will be completed when all 
the cities are visited by each of the M ants. After 
tours are completed, pheromone on each connect-
ing edge will be updated as 

       
∈


∀ ∈ (2)

where  and   represent an evaporation ratio
≤ ≤  and a positive constant respectively, 
and if the edge (i, j) is used in the tour of   
ant, then   is the tour length, otherwise   
is zero. After pheromones are updated, all M ants 
die and new M ants will be born again. Based on 
the updated global information, new tours will be 
constructed by new M ants. This process will be 
continued until the number of tours is reached to 
a certain number, or no ant constructs a shorter 
tour. The details of ACO for solving TSP can be 
found in (Dorigo and Gambardella, 1997).

4.  Ant Colony Optimization for the 
Maximum Independent Set 
Problem

The neighbour set    ∈  ∈of 
a vertex ∈  is the set of vertices adjacent to 
in G. As usual, the degree in G of vertex v is 
denoted as   and we have      . 
  for  ⊆   denotes the neighbour set of S, 
i.e.    ∈  ∖ .

An independent set in G can be constructed as 
follows. A vertex v is chosen arbitrarily in G, 
then v, vertices adjacent to v and edges incident 
to v are deleted. This graph is denoted as a re-
sulting subgraph GR of v and given in figure1. 
This process will be continued until no vertex re-
mains in a resulting subgraph GR. Obviously, the 

selected vertices forms an independent set of G.  
Finding an independent set using this procedure is 
used in this paper. 

MISP is quite different from TSP, such that 
there is no concept of path or all nodes need to 
be included. In MISP, which vertices belong to a 
maximum independent set is the issue, so, pher-
omones will be stored on vertices instead of 
edges.

Figure 1.  Example of GR and GI

4.1  Previous approach of ant colony 
optimization for the MISP

The ant colony optimization heuristic is used in 
Li and Xu (2003) in the following way. 

In Li and Xu (2003), an approximate approach 
was used to simulate the ants’ manners. Generally, 
a greedy approach is adopted. For maximum in-
dependent set problem, the solution construction 
procedure of ants is described as follows.

In Li and Xu (2003), they suggest using local 
information of vertex v as 

 

∑∈    (3)

where  (v) is the degree of vertex v , and 
(v) is the neighbour set of vertex v. Since the de-

v

    ∪

Resulting subgraph  Subgraph   induced by 
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nominator in (Dorigo and Gambardella, 1997) is 
equal to the number of vertices to be deleted, the 
numerator in (Dorigo and Gambardella, 1997) is 
similar to the number of edges to be deleted, main 
idea is that resulting subgraph of v contains many 
vertices and a small number of edges. However, 
this local information has a serious defect. Because 
of the denominator in (Dorigo and Gambardella, 
1997), even though two vertices have the same lo-
cal information, the resulting subgraphs may have 
quite different number of vertices and edges. 

Although parameters setting are important, Li 
and Xu (2003) used only one value for each pa-
rameter without any explanation about that. Their 
approach may not fully exploit the advantage of 
cooperative learning mechanism. That is, even the 
vertex which belongs to a good solution may 
have a less chance of growing pheromone. 

4.2  New procedure to obtain better local 
information

By the definition of the independent set, it is 
clear that if the vertex has a high degree, then it 
has a less chance of being included in a max-
imum independent set. However, empirical results 
indicate that the use of reciprocal of vertex’s de-
gree as local information does not generate a 
good solution. Therefore, a new value, which can 
be used as local information, is suggested in this 
paper. 

If the vertex v is selected into independent set, 
  can’t be selected into the independent set. 
So vertices in  ,   ∪   can be 
candidates of independent set. We focus on the 
subgraph GI induced by   about vertex v. In 
greedy aspect, we know that subgraph GI induced 
by   which have many vertices and a small 
number of edges may have many independent 
vertices. An example of subgraph induced by 
  is shown in <Figure 2>. 

Figure 2. Three example of subgraphs GI induced 
by  

Table 1. Attributes of three subgraphs in figure 2

Number 
of vertices

Number 
of edges

Sum of 
degree 
squares

Size of an 
independent 

set
(a) 4 6 36 1
(b) 4 3 10 2
(c) 4 3 12 3

Attributes of three subgraphs in figure2 is given 
in table1. Notice that, to generate a large inde-
pendent set, it is advantageous if the subgraph in-
duced by   have large number of vertices, 
small number of edges, and large sum of degree 
squares. 

Suppose that, according to the selection of verti-
ces, three different induced subgraphs can be gen-
erated as shown in <Figure 2>. Then, (c) should be 
generated to construct a larger independent set, 
because (c) has a fewer number of edges than (a) 
and a larger sum of degree squares than (b). 

From this observation, local information of a 
vertex   is suggested as follows:

  ∑∈    
   × ∑∈     ,

∀∈, (4)

where   ∪ . If    and ∑∈ 

  is zero, local information will be zero. 

Since ∑∈   is the denominator, it 
must not be zero. Therefore 1 is added on each 
attributes to guarantee an acceptable local in-
formation  . This local information is calculated 
for all vertices in the resulting graph GR = G\S,
  ∪  , where   is the vertex selected 
in the independent set most recently. And one of 
vertices which have the largest local information 
is selected into independent set. Then this proce-
dure is repeated until resulting subgraph GR is 
empty.

4.3  Limiting the vertices examined
Empirical results indicate that the local in-

formation suggested in this paper is very useful in 
finding a maximum independent set. However 
there are many vertices to compute local infor-
mation and probability. To reduce the computation 
time, we limit the vertices examined in each 
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iteration. Therefore, when a new vertex needs to 
be selected as a vertex in the independent set, we 
sort the vertices in a decreasing order of their lo-
cal information, and then we only examine the lo-
cal information of a vertex when its local in-
formation is greater than a certain value. This val-
ue is set as follows :

∈ × ≤ ≤  (5)

where GR is the resulting subgraph, R is the range 
which is used to indicate a ×percent of 
local information.

4.4  Pheromone updates and parameters 
setting

For the global information, we use the following 
value:


 ∑∈





∀∈ ∈
  ∖ (6)

where   is the set of already visited vertices by 
mth ant,  M is the set of the ants.

In MISP, pheromone update procedure is similar 
to the one used for TSP. 

      ∑∈ (7)

where       ∈  
,

  is the generated independent set by mth ant’s 
tour

In order to use ant colony optimization, it is es-
sential to choose parameter values. There are many 
parameters used in ACO. There are three parame-
ters below which is very important to make a 
solution.

  : Importance of global information()
  : Importance of local information()
 : Evaporation rate of pheromone
These three parameters are in the range of be-

tween zero and one. And remaining parameters 
are the number of ants, Q value, and initial pher-
omone level( ). These don’t have much influ-
ence in the solution. The number of ants may be 
larger than the number of nodes of instances. Q 
value and initial pheromone level have no range, 

so choosing good value of these parameters is 
very difficult. Since value of parameters   and 
initial pheromone level may dependent on instan-
ces, choosing their value may not be meaningful. 
Therefore we choose only the value of three pa-
rameters( ,  , ) by evolutionary operation. This 
evolutionary operation was used in the adaptive 
control of Exponential smoothing parameters which 
is the one of the forecasting methods (Montgomery, 
1970). Evolutionary operation scheme suggested 
by Montgomery is based on “simplex” which is 
the convex hull of k+1 points in general position. 

Thus, if there are k parameters, then the number 
of points in the design is N = k + 1. The N points 
in Rk correspond to the vertices of a regular-sided 
simplex. And each vertex of the simplex has val-
ues of k parameters in its components. Simplex 
can be constructed quite easily. Let D be a design 
matrix, that is, an × matrix whose rows cor-
respond to the vertices of a simplex and whose 
columns correspond to the k parameters. The de-
sign matrix for a simplex design with a starting 
point can be written as the sum of two × 
matrices, that is,

Mini F(i) = F(3) Mini F(i) = F(0)

d′o

d′3

d3

d3

d1

d1

d2

d0

d0

d2

Figure 3. The evolutionary operation suggested by 
Montgomery.

  






  ⋯ 
  ⋯ 
  ⋯ 
⋯ ⋯ ⋯
  ⋯ 











⋯ 
⋯ 
⋯ 
⋯ ⋯ ⋯
⋯ 





 (8)

where  
  ,  

   ,

  = the desired edge length of the simplex,
 = initial value of i-th parameter, i = 1, 2 …, k

An example of the evolutionary operation with k
= 3 is shown in <Figure 3>. Here, F(i) denotes 
the objective function value of point di. In this 
paper, objective function is the cardinality of in-



452 Hwayong Choi․Namsu Ahn․Sungsoo Park

dependent set. When the objective value of the 
vertex j is minimum, the vertex j is deleted and 
  which is an opposite vertex of the vertex j is 
created. By flipping over, we form a new simplex 
by deleting vertex j from the design matrix. Here, 
the new point   of the simplex can be computed 
using


  

   ⋯       

 ⋯      (9)

where  is ith row of matrix D. 

4.5  Procedure of ACO
Procedure of ant colony optimization algorithm 

we suggested is stated as following

Initialize parameters:
Loop

For m =1 to M do
Loop

Choose a vertex v in G with probability 
given by (6).
Set GR = resulting subgraph of v

Until GR is empty
Save the largest independent set found so far
Update the pheromone on each vertex given 
by (7)

Until  the termination criteria is satisfied

5.  Computational Results

In this section, we report computational experi-
ments performed on instances, which are taken 
from the Second DIMACS challenge on maximum 
clique benchmarks. Since finding a maximum cli-
que in a graph is equivalent to searching a maxi-
mum independent set in the complement graph, 
conversions of the benchmarks were performed, 
and then the experiments are executed.

Parameters( ,   and ) which are used in ACO 
are tuned through the evolutionary operations. D 
matrix is made by using equation (8) and we use 
equation obtained from (9) recursively. Four verti-
ces have objective value respectively. And then 
we can find opposite vertex which has the worst 
objective value by using equation (9). This oper-

ation was repeated until any better solution isn’t 
obtained. We used the value of the desired edge 
length of the simplex equal to 0.2.

But there is some difficulty. Because this is a 
cardinality problem of maximum independent set, 
it is not certain that good solution is obtained from 
good parameters setting. To overcome this diffi-
culty, we tune parameters through many instan-
ces. This procedure is shown in <Table 2>. At 
first, we found matrix D from on instance, san200_ 
0.9_3 after using evolutionary operation with two 
iterations. And then the matrix D found was used 
as initial matrix in the next instance, C125.9. This 
procedure was terminated when parameters value 
of matrix D find maximum independent set for a 
instance, C2000.5.

Table 2. The process of parameters setting

instance san200_0.9_3

⇒

C125.9

⇒

brock200_4

        

 0.5 0.5 0.5 0.5 0.5 0.5 0.8 0.39 0.53

 0.69 0.69 0.55 0.69 0.55 0.55 0.69 0.55 0.55

 0.55 0.69 0.55 0.65 0.42 0.4 0.65 0.42 0.4

 0.61 0.61 0.37 0.62 0.37 0.59 0.62 0.37 0.59

ineration after 2 
iterations

after 2 
interations

after 1 
iterations

⇒

sanr200_0.9

⇒

C250.9

⇒

brock200_2

        

0.57 0.52 0.71 0.57 0.51 0.52 0.37 0.78 0.67

0.69 0.55 0.55 0.43 0.38 0.66 0.53 0.69 0.6

0.49 0.51 0.52 0.49 0.51 0.52 0.49 0.68 0.8

0.62 0.37 0.59 0.38 0.58 0.67 0.38 0.58 0.67

after 3
 iterations

after 2 
interations

after 3
 iterations

⇒

DSJC500.5

⇒

C2000.5 independent
set

     

0.37 0.78 0.67 0.14 0.67 0.4 15

0.34 0.67 0.5 0.12 0.69 0.2 15

0.2 0.66 0.65 0.27 0.79 0.3 16*

0.22 0.83 0.54 0.27 0.59 0.3 15

after 3 iterations after 4 interations
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Since the other parameters M, Q and   are 
not critical for the solution, these parameter are 
selected from a small set of candidate values by 
running on a subset of the test instances.

To show the performance of the proposed ACO 
in this paper, comparisons of computational results 
with the ACO suggested by Li and Xu (2003) are 
made. The required parameters for ACO are shown 
in <Table 3>.

Table 3. The parameters for ACO

Li and Xu Choi and Park

 5 50

 0.5 0.27

 0.5 0.79

 0.2 0.3

 0.05 1
  1.0 1.0

 - 0.1/0.9

The algorithm given in Li and Xu (2003) and ACO 
in this paper are terminated when it does not produce a 
better bound in 30, 150 successive iterations res-
pectively. The computational results are shown in 
<Table 4>. The symbols   ,    and   represent 
the number of vertices, number of edges, and the best 
objective value found, respectively. The (*) mark in 
the    denotes the cases, where the optimum is 
reached. In some cases, when the two ACO ap-
proaches failed to reach an optimum, better bound is 
denoted by boldface number.

Graph density is one of the characteristics. Graph 
density we used is defined as follows :

    
  (10)

Two approaches are coded in C++ and run on a 
2.60-GHz Pentium 4 with 2 GB RAM. In most 
cases, two ACO approaches find good solutions 
quickly. However, owing to the limited amount of 
executable CPU time, if the ACO did not reach 
to a termination criterion within 1 hour, the pro-
gram was terminated.

In most cases, optimum or tight bounds can be 
obtained through the proposed ACO.

The comparisons of computational results in 

<Table 4> show that proposed ACO in this paper 
works better than Li and Xu (2003).

To show the performance of ACO in this paper, 
we compare our computational results with other 
heuristics that are genetic local search algorithm 
(GENE), iterated local search algorithm (ITER), mu-
ltistart local search algorithm (MULT). The results 
are in <Table 5>. These results are taken from 
(Marchiori, 2002). Instances are from DIMACS.

We briefly remark the characteristic of the heu-
ristics and import out parameters used in the heu-
ristics in the following :
∙Genetic local search algorithm. 

: Simple genetic algorithm + local search
(Population size = 10, mutation rate = 0.1, cross-
over rate = 0.9, termination-condition = 2,000 gen-
erations) 

∙ Iterated local search algorithm.
: Repeat local search procedure with just one 
candidate solution.
(Population size = 1, mutation rate = 0, termina-
tion-condition = 20,000 generations)

∙Multistart local search algorithm.
: Apply local search procedure to each element 
of large set of candidate solutions.
(Population size = 20,000, termination-condition = 
0 generation) 
Three other heuristics are very efficient algo-

rithms to find a maximum independent set. But 
performance of multistart local search is worse 
than those of other heuristics and ACO. Genetic 
local search algorithm and iterated local search al-
gorithm and ACO in this paper showed similar 
performances. In some cases, ACO finds better 
solutions than other heuristics. To the contrary, 
ACO finds poor solutions than other heuristics in 
some instances.

One interesting fact was observed during the 
experiments. ACO in this paper use the range R.  
For dense graphs (i.e. graph density is larger than 
0.5), when the range R is 0.9, ACO find good 
solutions very well. On the contrary, when the 
range R is 0.1, ACO find good solutions very well 
in sparse graph (ie. graph density is less than 
0.1). This result is shown in <Table 6>. <Table 
4>. Comparisons of computational results with Li 
and Xu (2003).
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Table 4. Comparisons of computational results with Li and Xu(2003)

Instance     Graph density Optimum
 

Li and Xu Choi and Park

brock200_2 200 10024 0.503719 12 9 11

brock200_4 200 6811 0.342261 17 15 16

brock400_2 400 20014 0.250802 29 24 24

brock400_4 400 20035 0.251065 33 23 24

brock800_2 800 111434 0.348677 24 18 20

brock800_4 800 111957 0.350304 26 18 20

p_hat300-1 300 33917 0.756232 8 8* 8*

p_hat300-2 300 22922 0.511081 25 25* 25*

p_hat300-3 300 11460 0.255518 36 35 36*

p_hat700-1 700 183651 0.750668 11 11* 11*

p_hat700-2 700 122922 0.49392 > = 44 44 42

p_hat700-3 700 61640 0.246392 > = 62 60 57

DSJC500.5 500 62126 0.498004 > = 13 11 13*

DSJC1000.5 1000 249674 0.499848 > = 15 13 14

hamming6-2 64 192 0.095238 32 32* 32*

hamming8-4 256 11776 0.360784 16 16* 16*

hamming10-4 1024 89600 0.171065 40 33 37

keller4 171 5100 0.350877 11 10 11

keller5 776 74710 0.248454 27 19 23

c-fat200-1 200 18366 0.922915 12 12* 12*

c-fat200-2 200 16665 0.837437 24 24* 24*

c-fat500-1 500 120291 0.964257 14 14* 14*

c-fat500-2 500 115611 0.926741 26 26* 26*

san200_0.9_1 200 1990 0.1 70 49 70*

san200_0.9_2 200 1990 0.1 60 45 52

san200_0.9_3 200 1990 0.1 44 32 35

san400_0.7_1 400 23940 0.3 40 22 22

san400_0.7_2 400 23940 0.3 30 18 17

san400_0.7_3 400 23940 0.3 22 14 14

sanr200_0.7 200 6032 0.303116 18 17 18*

sanr200_0.9 200 2037 0.102362 42 39 38

sanr400_0.5 400 39816 0.498947 13 11 13*

sanr400_0.7 400 23931 0.299887 21 18 20

MANN_a27 378 702 0.009852 126 122 125

MANN_a45 1035 1980 0.0037 345 338 342

C2000.5 2000 999164 0.499832 > = 16 13 16*
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Table 5. Comparisons of computational results with other heuristic algorithms

Instance
Graph
density

MULT
Avg(best)

GENE
Avg(best)

ITER
Avg(best) DIMACS best ACO-choi

Avg(best)

brock200_2 0.503719 12(12) 10.5(12) 10.5(12) 12 11(11)

brock200_4 0.342261 15.7(17) 15.4(16) 15.5(16) 17 15.8(16)

brock400_2 0.250802 21.7(23) 22.5(24) 23.2(25) 25 23.7(24)

brock400_4 0.251065 21.8(22) 23.6(25) 23.1(24) 25 23.7(24)

brock800_2 0.348677 18.0(19) 19.3(20) 19.1(21) 21 19.6(20)

brock800_4 0.350304 18.0(18) 18.9(20) 19.0(20) 21 19.2(20)

p_hat300-1 0.756232 8.0(8) 8.0(8) 8.0(8) 8 8.0(8)

p_hat300-2 0.511081 22.9(25) 25(25) 25(25) 25 25.0(25)

p_hat300-3 0.255518 31.0(32) 34.6(36) 35.1(36) 36 35.1(36)

p_hat700-1 0.750668 9.1(10) 9.8(11) 9.9(11) 11 10.5(11)

p_hat700-2 0.49392 35.5(37) 43.5(44) 43.6(44) 44 41.6(42)

p_hat700-3 0.246392 49.5(52) 60.4(62) 61.8(62) 62 55.4(57)

p_hat1500-1 0.756232 10.2(11) 10.8(11) 10.4(11) 12 10.9(11)

p_hat1500-2 0.511018 46.9(48) 63.8(65) 63.9(65) 65 58.9(60)

p-hat1500-3 0.255518 64.3(67) 92.4(94) 93.0(94) 94 84.5(89)

DSJC500.5 0.498004 12.0(12) 12.2(13) 12.1(13) 15 12.8(13)

DSJC1000.5 0.499848 13.1(14) 13.3(14) 13.5(14) 15 13.7(14)

hamming8-4 0.360784 15.7(16) 16.0(16) 16.0(16) 16 16.0(16)

hamming10-4 0.171065 32.0(33) 37.7(40) 38.8(40) 40 36.1(37)

keller4 0.350877 11.0(11) 11.0(11) 11.0(11) 11 11.0(11)

keller5 0.248454 23.9(25) 26.0(27) 26.3(27) 27 23.7(24)

MANN_a27 0.009852 124.8(125) 125.6(126) 126.0(126) 126 124.5(125)

MANN_a45 0.0037 339.7(340) 342.4(343) 343.1(345) 345 341.3(342)

C125.9 0.101548 32.6(33) 33.8(34) 34.0(34) 34 32.7(33)

C500.9 0.099543 46.7(48) 52.2(56) 52.7(55) 57 50.5(52)

C2000.5 0.499832 14.1(15) 14.2(15) 14.2(15) 16 15.7(16)

MULT GENE ITER ACO

86

84

88

90

92

94

96

% The percentage of closeness to DIMACS

Figure 4. The percentage of closeness to 
DIMACS.

Table 6. Computational results for different value 
of R

Instance graph 
density range R independent set

MANN_a27 0.0098 0.9 0.1 106 125

MANN_a45 0.0037 0.9 0.1 262 342

C125.9 0.1015 0.9 0.1 32 33

C2000.5 0.4998 0.9 0.1 16 14

DSJC500.5 0.4980 0.9 0.1 13 12

p_hat700-1 0.7506 0.9 0.1 11 10
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Local information is calculated in the neighbour 
set of   ∪ . For a sparse graph, devi-
ation of local information   of vertices is small. 
Since the number of chosen vertices by local in-
formation can be a few, large range R has no 
meaning. So, for a sparse graph, it is a good ap-
proach to give a small value to the range R. On 
the other hand, for a dense graph, deviation of lo-
cal information   of vertices is large. If the 
range R is large, vertices having large local in-
formation are remaining. Therefore giving a large 
value to the range R is appropriate to find the 
maximum independent set.

6.  Conclusions and future works

In this research, ACO is modified to solve the 
MISP, which is a one of the well-known NP-hard 
problems. Numerical experiments are included to 
show the performance of the proposed ACO, and 
the obtained results indicate that the ACO is ef-
fective for solving the MISP. 

In this research, all the numerical experiments 
are performed with the parameters found from the 
proposed evolutionary operation. But this approach 
isn’t complete and optimal. So according to the 
characteristic of graphs, optimal way of combining 
the parameter can be a direction for the future 
research.

At concept of ant colony optimization, ants are 
scattered at one time. But computer complier scat-
ters one ant at a time. So computation time of 
proposed ACO in this paper is little slower than 
other algorithms. In further speed of ACO algo-
rithm can be improved by parallel programming 

of supercomputer or other methods. 
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