
Journal of the Korean Institute of Industrial Engineers
Vol. 33, No. 4, pp. 447-456, December 2007.

An Ant Colony Optimization Approach
for the Maximum Independent Set Problem

Hwayong Choi․Namsu Ahn․Sungsoo Park†*

Department of Industrial Engineering, KAIST, Daejeon 305-701, Korea

개미 군집 최적화 기법을 활용한 최대 독립 마디
문제에 관한 해법

최화용․안남수․박성수

한국과학기술원 산업공학과

The ant colony optimization (ACO) is a probabilistic Meta-heuristic algorithm which has been developed in
recent years. Originally ACO was used for solving the well-known Traveling Salesperson Problem. More
recently, ACO has been used to solve many difficult problems. In this paper, we develop an ant colony
optimization method to solve the maximum independent set problem, which is known to be NP-hard. In this
paper, we suggest a new method for local information of ACO. Parameters of the ACO algorithm are tuned by
evolutionary operations which have been used in forecasting and time series analysis. To show the performance
of the ACO algorithm, the set of instances from discrete mathematics and computer science (DIMACS)
benchmark graphs are tested, and computational results are compared with a previously developed ACO
algorithm and other heuristic algorithms.

Keywords: Maximum Independent Set (MIS), Ant Colony Optimization (ACO), Heuristic Algorithm

1. Introduction

In recent years, Maximum Independent Set
Problem (MISP) has attracted much attention be-
cause of its applicability on many real world pro-
blems. This problem is relevant for many theoret-
ical research areas and practical applications. As an
example, we mention the clustering problem for
peer to peer mobile wireless networks that can be
easily reduced to the problem of finding a max-
imum independent set of nodes in the network
(Gerla and Tsai, 1995). In many cases, exact algo-
rithms designed to solve the problem to optimality

cannot guarantee a reasonable computation time.
Therefore, to take advantage in a computation time,
heuristic approaches can be applied for the MISP.

One of the most powerful heuristic algorithms is
the Ant Colony Optimization (ACO). Since the first
release of ACO in 1997 (Dorigo and Gambardella,
1997), ACO attracted much interest due to its co-
operative learning mechanism and a converging pro-
cess to a good solution. More recently, ACO has
been used to solve many difficult problems such as
Quadratic Assignment Problem (Gambardella et al.,
1999), Data Mining (Parpinelli et al., 2002), Vehicle
Routing Problem (Gambardella et al., 1999), etc. In
these approaches, ACO derived good performances

†Corresponding author : Professor Sungsoo Park, Department of Industrial Engineering, KAIST, Kuseong-dong, Yuseong-gu, Daejeon 305-701,
Korea, E-mail : sspark@kaist.ac.kr

 Received October 2007; revision received November 2007; accepted November 2007.

448 Hwayong Choi․Namsu Ahn․Sungsoo Park

compared to other algorithms. However, so far,
not many research efforts are found on applying
ACO for MISP (Li and Xu, 2003). So, in this pa-
per, improved ACO for MISP will be shown, and
the performance will be demonstrated.

This paper is organized as follows. In Section 2,
overview of ACO is provided with an explanation
on how it was applied to solve the Traveling
Salesman Problem (TSP). Section 3 is devoted to
explain how the proposed ACO can be used to
solve the MISP. In Section 4, to show the per-
formance of the proposed ACO, computational ex-
periments are performed on discrete mathematics
and theoretical computer science (DIMACS) benc-
hmarks. Finally, Section 5 contains conclusions and
some directions on future research.

2. Background about the Maximum
Independent Set Problem

We consider a graph      with vertex set
V and edge set E and its complement, 
  where    ∈   ∈ ≠. An
independent set (or vertex packing or stable set)
is a vertex set whose elements are pairwise non-
adjacent, i.e., a subset  ⊂  is independent if
for all  , ∈  , the edge ( ) ∉  . A max-
imum independent set is an independent set of
maximum cardinality.

The integer programming formulation of the max-
imum independent set problem is given as fol-
lows:

 
 

 

,

s. t.   ≤ , ∀ ∈ ,

∈ ,    ⋯   .

Clearly, exact algorithms and heuristic algorithms
have both strong points and weak points. Exact
algorithms can find the maximum independent set.
On the other hand, heuristic algorithms usually
find the feasible solutions more quickly than exact
algorithms. However the quality of the solutions
may not be good.

3. Overview of Ant Colony
Optimization

The ACO has been inspired by the observation of
real ants’ manner of finding a shortest path. The
art of finding a shortest path between a food and
a nest lies in a cooperative learning mechanism
among the ants. For example, if a shortest path
for food is blocked by a sudden obstacle, then
lots of new paths need to be explored by the ants.
When a first group of ants has arrived, paths will
be chosen randomly, and the paths will be marked
by a certain chemical substance, called pheromone.
Since pheromone will be evaporated as time pass-
es, a longer path will be marked with less pher-
omone and a shorter path will be marked with
more pheromone. Since the pheromone lures the
ants, when a next group of ants has arrived, a path
marked with a higher level of pheromone will be
explored more with a high probability. There-
fore, a shorter path will be visited further by the
ants, and this cooperative behavior of the ants
will lead to a new shortest path.

This observation of real ants leads to a new
heuristic algorithm, ACO. ACO was first proposed
to address the famous traveling salesman problem
(TSP). Implementation of the ACO for solving
TSP can be addressed briefly as follows. First, M
artificial ants are placed on M different cities,
which are chosen randomly. Next, to construct a
tour, unvisited cities need to be chosen by each
ant. This selection is based on a certain proba-
bility, whose calculation is a function of the so-
called local and global information from the cur-
rent city. Note that, due to the probabilistic se-
lection of the next unvisited city, premature con-
vergence can be avoided. Let local information,
 be the reciprocal of distance from the current
city i to the next unvisited city j. Use of the re-
ciprocal of distance helps to find an acceptable
solution in an early stage. Similarly, let global in-
formation,  be the amount of pheromone on edge
(i, j) which is connection city i and city j from
the precedent ants’ tours. At the initial tour, 
takes some positive constant, which will be de-
noted by  . Global information will be used for
generating a positive feedback on good solution.
Now, for the next unvisited city, say j, the se-

An Ant Colony Optimization Approach for the Maximum Independent Set Problem 449

lection possibility of mth ant can be given by



∑∈  

 


∀ ∈  ,

∈   ∖ (1)

where  is the set of already visited cities by
mth ant, M is the set of the ants. And ≥ 
and ≥  denote the relative importance. This
city visiting procedure will be completed when all
the cities are visited by each of the M ants. After
tours are completed, pheromone on each connect-
ing edge will be updated as

       
∈


∀ ∈ (2)

where  and  represent an evaporation ratio
≤ ≤  and a positive constant respectively,
and if the edge (i, j) is used in the tour of 
ant, then  is the tour length, otherwise 
is zero. After pheromones are updated, all M ants
die and new M ants will be born again. Based on
the updated global information, new tours will be
constructed by new M ants. This process will be
continued until the number of tours is reached to
a certain number, or no ant constructs a shorter
tour. The details of ACO for solving TSP can be
found in (Dorigo and Gambardella, 1997).

4. Ant Colony Optimization for the
Maximum Independent Set
Problem

The neighbour set    ∈  ∈of
a vertex ∈ is the set of vertices adjacent to 
in G. As usual, the degree in G of vertex v is
denoted as   and we have      .
  for  ⊆  denotes the neighbour set of S,
i.e.    ∈  ∖ .

An independent set in G can be constructed as
follows. A vertex v is chosen arbitrarily in G,
then v, vertices adjacent to v and edges incident
to v are deleted. This graph is denoted as a re-
sulting subgraph GR of v and given in figure1.
This process will be continued until no vertex re-
mains in a resulting subgraph GR. Obviously, the

selected vertices forms an independent set of G.
Finding an independent set using this procedure is
used in this paper.

MISP is quite different from TSP, such that
there is no concept of path or all nodes need to
be included. In MISP, which vertices belong to a
maximum independent set is the issue, so, pher-
omones will be stored on vertices instead of
edges.

Figure 1. Example of GR and GI

4.1 Previous approach of ant colony
optimization for the MISP

The ant colony optimization heuristic is used in
Li and Xu (2003) in the following way.

In Li and Xu (2003), an approximate approach
was used to simulate the ants’ manners. Generally,
a greedy approach is adopted. For maximum in-
dependent set problem, the solution construction
procedure of ants is described as follows.

In Li and Xu (2003), they suggest using local
information of vertex v as

 

∑∈    (3)

where  (v) is the degree of vertex v , and 
(v) is the neighbour set of vertex v. Since the de-

v

    ∪

Resulting subgraph  Subgraph  induced by 

450 Hwayong Choi․Namsu Ahn․Sungsoo Park

nominator in (Dorigo and Gambardella, 1997) is
equal to the number of vertices to be deleted, the
numerator in (Dorigo and Gambardella, 1997) is
similar to the number of edges to be deleted, main
idea is that resulting subgraph of v contains many
vertices and a small number of edges. However,
this local information has a serious defect. Because
of the denominator in (Dorigo and Gambardella,
1997), even though two vertices have the same lo-
cal information, the resulting subgraphs may have
quite different number of vertices and edges.

Although parameters setting are important, Li
and Xu (2003) used only one value for each pa-
rameter without any explanation about that. Their
approach may not fully exploit the advantage of
cooperative learning mechanism. That is, even the
vertex which belongs to a good solution may
have a less chance of growing pheromone.

4.2 New procedure to obtain better local
information

By the definition of the independent set, it is
clear that if the vertex has a high degree, then it
has a less chance of being included in a max-
imum independent set. However, empirical results
indicate that the use of reciprocal of vertex’s de-
gree as local information does not generate a
good solution. Therefore, a new value, which can
be used as local information, is suggested in this
paper.

If the vertex v is selected into independent set,
  can’t be selected into the independent set.
So vertices in  ,   ∪  can be
candidates of independent set. We focus on the
subgraph GI induced by   about vertex v. In
greedy aspect, we know that subgraph GI induced
by   which have many vertices and a small
number of edges may have many independent
vertices. An example of subgraph induced by
  is shown in <Figure 2>.

Figure 2. Three example of subgraphs GI induced
by  

Table 1. Attributes of three subgraphs in figure 2

Number
of vertices

Number
of edges

Sum of
degree
squares

Size of an
independent

set
(a) 4 6 36 1
(b) 4 3 10 2
(c) 4 3 12 3

Attributes of three subgraphs in figure2 is given
in table1. Notice that, to generate a large inde-
pendent set, it is advantageous if the subgraph in-
duced by   have large number of vertices,
small number of edges, and large sum of degree
squares.

Suppose that, according to the selection of verti-
ces, three different induced subgraphs can be gen-
erated as shown in <Figure 2>. Then, (c) should be
generated to construct a larger independent set,
because (c) has a fewer number of edges than (a)
and a larger sum of degree squares than (b).

From this observation, local information of a
vertex  is suggested as follows:

  ∑∈    
   × ∑∈     ,

∀∈, (4)

where   ∪ . If   and ∑∈ 

  is zero, local information will be zero.

Since ∑∈   is the denominator, it
must not be zero. Therefore 1 is added on each
attributes to guarantee an acceptable local in-
formation  . This local information is calculated
for all vertices in the resulting graph GR = G\S,
  ∪  , where  is the vertex selected
in the independent set most recently. And one of
vertices which have the largest local information
is selected into independent set. Then this proce-
dure is repeated until resulting subgraph GR is
empty.

4.3 Limiting the vertices examined
Empirical results indicate that the local in-

formation suggested in this paper is very useful in
finding a maximum independent set. However
there are many vertices to compute local infor-
mation and probability. To reduce the computation
time, we limit the vertices examined in each

An Ant Colony Optimization Approach for the Maximum Independent Set Problem 451

iteration. Therefore, when a new vertex needs to
be selected as a vertex in the independent set, we
sort the vertices in a decreasing order of their lo-
cal information, and then we only examine the lo-
cal information of a vertex when its local in-
formation is greater than a certain value. This val-
ue is set as follows :

∈ × ≤ ≤  (5)

where GR is the resulting subgraph, R is the range
which is used to indicate a ×percent of
local information.

4.4 Pheromone updates and parameters
setting

For the global information, we use the following
value:


 ∑∈





∀∈ ∈
  ∖ (6)

where  is the set of already visited vertices by
mth ant, M is the set of the ants.

In MISP, pheromone update procedure is similar
to the one used for TSP.

      ∑∈ (7)

where       ∈  
,

 is the generated independent set by mth ant’s
tour

In order to use ant colony optimization, it is es-
sential to choose parameter values. There are many
parameters used in ACO. There are three parame-
ters below which is very important to make a
solution.

 : Importance of global information()
 : Importance of local information()
 : Evaporation rate of pheromone
These three parameters are in the range of be-

tween zero and one. And remaining parameters
are the number of ants, Q value, and initial pher-
omone level( ). These don’t have much influ-
ence in the solution. The number of ants may be
larger than the number of nodes of instances. Q
value and initial pheromone level have no range,

so choosing good value of these parameters is
very difficult. Since value of parameters  and
initial pheromone level may dependent on instan-
ces, choosing their value may not be meaningful.
Therefore we choose only the value of three pa-
rameters( ,  , ) by evolutionary operation. This
evolutionary operation was used in the adaptive
control of Exponential smoothing parameters which
is the one of the forecasting methods (Montgomery,
1970). Evolutionary operation scheme suggested
by Montgomery is based on “simplex” which is
the convex hull of k+1 points in general position.

Thus, if there are k parameters, then the number
of points in the design is N = k + 1. The N points
in Rk correspond to the vertices of a regular-sided
simplex. And each vertex of the simplex has val-
ues of k parameters in its components. Simplex
can be constructed quite easily. Let D be a design
matrix, that is, an × matrix whose rows cor-
respond to the vertices of a simplex and whose
columns correspond to the k parameters. The de-
sign matrix for a simplex design with a starting
point can be written as the sum of two ×
matrices, that is,

Mini F(i) = F(3) Mini F(i) = F(0)

d′o

d′3

d3

d3

d1

d1

d2

d0

d0

d2

Figure 3. The evolutionary operation suggested by
Montgomery.

  






  ⋯ 
  ⋯ 
  ⋯ 
⋯ ⋯ ⋯
  ⋯ 











⋯ 
⋯ 
⋯ 
⋯ ⋯ ⋯
⋯ 





 (8)

where  
  ,  

   ,

 = the desired edge length of the simplex,
 = initial value of i-th parameter, i = 1, 2 …, k

An example of the evolutionary operation with k
= 3 is shown in <Figure 3>. Here, F(i) denotes
the objective function value of point di. In this
paper, objective function is the cardinality of in-

452 Hwayong Choi․Namsu Ahn․Sungsoo Park

dependent set. When the objective value of the
vertex j is minimum, the vertex j is deleted and
 which is an opposite vertex of the vertex j is
created. By flipping over, we form a new simplex
by deleting vertex j from the design matrix. Here,
the new point  of the simplex can be computed
using


  

   ⋯       

 ⋯     (9)

where  is ith row of matrix D.

4.5 Procedure of ACO
Procedure of ant colony optimization algorithm

we suggested is stated as following

Initialize parameters:
Loop

For m =1 to M do
Loop

Choose a vertex v in G with probability
given by (6).
Set GR = resulting subgraph of v

Until GR is empty
Save the largest independent set found so far
Update the pheromone on each vertex given
by (7)

Until the termination criteria is satisfied

5. Computational Results

In this section, we report computational experi-
ments performed on instances, which are taken
from the Second DIMACS challenge on maximum
clique benchmarks. Since finding a maximum cli-
que in a graph is equivalent to searching a maxi-
mum independent set in the complement graph,
conversions of the benchmarks were performed,
and then the experiments are executed.

Parameters( ,  and ) which are used in ACO
are tuned through the evolutionary operations. D
matrix is made by using equation (8) and we use
equation obtained from (9) recursively. Four verti-
ces have objective value respectively. And then
we can find opposite vertex which has the worst
objective value by using equation (9). This oper-

ation was repeated until any better solution isn’t
obtained. We used the value of the desired edge
length of the simplex equal to 0.2.

But there is some difficulty. Because this is a
cardinality problem of maximum independent set,
it is not certain that good solution is obtained from
good parameters setting. To overcome this diffi-
culty, we tune parameters through many instan-
ces. This procedure is shown in <Table 2>. At
first, we found matrix D from on instance, san200_
0.9_3 after using evolutionary operation with two
iterations. And then the matrix D found was used
as initial matrix in the next instance, C125.9. This
procedure was terminated when parameters value
of matrix D find maximum independent set for a
instance, C2000.5.

Table 2. The process of parameters setting

instance san200_0.9_3

⇒

C125.9

⇒

brock200_4

        

 0.5 0.5 0.5 0.5 0.5 0.5 0.8 0.39 0.53

 0.69 0.69 0.55 0.69 0.55 0.55 0.69 0.55 0.55

 0.55 0.69 0.55 0.65 0.42 0.4 0.65 0.42 0.4

 0.61 0.61 0.37 0.62 0.37 0.59 0.62 0.37 0.59

ineration after 2
iterations

after 2
interations

after 1
iterations

⇒

sanr200_0.9

⇒

C250.9

⇒

brock200_2

        

0.57 0.52 0.71 0.57 0.51 0.52 0.37 0.78 0.67

0.69 0.55 0.55 0.43 0.38 0.66 0.53 0.69 0.6

0.49 0.51 0.52 0.49 0.51 0.52 0.49 0.68 0.8

0.62 0.37 0.59 0.38 0.58 0.67 0.38 0.58 0.67

after 3
 iterations

after 2
interations

after 3
 iterations

⇒

DSJC500.5

⇒

C2000.5 independent
set

     

0.37 0.78 0.67 0.14 0.67 0.4 15

0.34 0.67 0.5 0.12 0.69 0.2 15

0.2 0.66 0.65 0.27 0.79 0.3 16*

0.22 0.83 0.54 0.27 0.59 0.3 15

after 3 iterations after 4 interations

An Ant Colony Optimization Approach for the Maximum Independent Set Problem 453

Since the other parameters M, Q and   are
not critical for the solution, these parameter are
selected from a small set of candidate values by
running on a subset of the test instances.

To show the performance of the proposed ACO
in this paper, comparisons of computational results
with the ACO suggested by Li and Xu (2003) are
made. The required parameters for ACO are shown
in <Table 3>.

Table 3. The parameters for ACO

Li and Xu Choi and Park

 5 50

 0.5 0.27

 0.5 0.79

 0.2 0.3

 0.05 1
  1.0 1.0

 - 0.1/0.9

The algorithm given in Li and Xu (2003) and ACO
in this paper are terminated when it does not produce a
better bound in 30, 150 successive iterations res-
pectively. The computational results are shown in
<Table 4>. The symbols   ,   and  represent
the number of vertices, number of edges, and the best
objective value found, respectively. The (*) mark in
the   denotes the cases, where the optimum is
reached. In some cases, when the two ACO ap-
proaches failed to reach an optimum, better bound is
denoted by boldface number.

Graph density is one of the characteristics. Graph
density we used is defined as follows :

    
  (10)

Two approaches are coded in C++ and run on a
2.60-GHz Pentium 4 with 2 GB RAM. In most
cases, two ACO approaches find good solutions
quickly. However, owing to the limited amount of
executable CPU time, if the ACO did not reach
to a termination criterion within 1 hour, the pro-
gram was terminated.

In most cases, optimum or tight bounds can be
obtained through the proposed ACO.

The comparisons of computational results in

<Table 4> show that proposed ACO in this paper
works better than Li and Xu (2003).

To show the performance of ACO in this paper,
we compare our computational results with other
heuristics that are genetic local search algorithm
(GENE), iterated local search algorithm (ITER), mu-
ltistart local search algorithm (MULT). The results
are in <Table 5>. These results are taken from
(Marchiori, 2002). Instances are from DIMACS.

We briefly remark the characteristic of the heu-
ristics and import out parameters used in the heu-
ristics in the following :
∙Genetic local search algorithm.

: Simple genetic algorithm + local search
(Population size = 10, mutation rate = 0.1, cross-
over rate = 0.9, termination-condition = 2,000 gen-
erations)

∙ Iterated local search algorithm.
: Repeat local search procedure with just one
candidate solution.
(Population size = 1, mutation rate = 0, termina-
tion-condition = 20,000 generations)

∙Multistart local search algorithm.
: Apply local search procedure to each element
of large set of candidate solutions.
(Population size = 20,000, termination-condition =
0 generation)
Three other heuristics are very efficient algo-

rithms to find a maximum independent set. But
performance of multistart local search is worse
than those of other heuristics and ACO. Genetic
local search algorithm and iterated local search al-
gorithm and ACO in this paper showed similar
performances. In some cases, ACO finds better
solutions than other heuristics. To the contrary,
ACO finds poor solutions than other heuristics in
some instances.

One interesting fact was observed during the
experiments. ACO in this paper use the range R.
For dense graphs (i.e. graph density is larger than
0.5), when the range R is 0.9, ACO find good
solutions very well. On the contrary, when the
range R is 0.1, ACO find good solutions very well
in sparse graph (ie. graph density is less than
0.1). This result is shown in <Table 6>. <Table
4>. Comparisons of computational results with Li
and Xu (2003).

454 Hwayong Choi․Namsu Ahn․Sungsoo Park

Table 4. Comparisons of computational results with Li and Xu(2003)

Instance     Graph density Optimum
 

Li and Xu Choi and Park

brock200_2 200 10024 0.503719 12 9 11

brock200_4 200 6811 0.342261 17 15 16

brock400_2 400 20014 0.250802 29 24 24

brock400_4 400 20035 0.251065 33 23 24

brock800_2 800 111434 0.348677 24 18 20

brock800_4 800 111957 0.350304 26 18 20

p_hat300-1 300 33917 0.756232 8 8* 8*

p_hat300-2 300 22922 0.511081 25 25* 25*

p_hat300-3 300 11460 0.255518 36 35 36*

p_hat700-1 700 183651 0.750668 11 11* 11*

p_hat700-2 700 122922 0.49392 > = 44 44 42

p_hat700-3 700 61640 0.246392 > = 62 60 57

DSJC500.5 500 62126 0.498004 > = 13 11 13*

DSJC1000.5 1000 249674 0.499848 > = 15 13 14

hamming6-2 64 192 0.095238 32 32* 32*

hamming8-4 256 11776 0.360784 16 16* 16*

hamming10-4 1024 89600 0.171065 40 33 37

keller4 171 5100 0.350877 11 10 11

keller5 776 74710 0.248454 27 19 23

c-fat200-1 200 18366 0.922915 12 12* 12*

c-fat200-2 200 16665 0.837437 24 24* 24*

c-fat500-1 500 120291 0.964257 14 14* 14*

c-fat500-2 500 115611 0.926741 26 26* 26*

san200_0.9_1 200 1990 0.1 70 49 70*

san200_0.9_2 200 1990 0.1 60 45 52

san200_0.9_3 200 1990 0.1 44 32 35

san400_0.7_1 400 23940 0.3 40 22 22

san400_0.7_2 400 23940 0.3 30 18 17

san400_0.7_3 400 23940 0.3 22 14 14

sanr200_0.7 200 6032 0.303116 18 17 18*

sanr200_0.9 200 2037 0.102362 42 39 38

sanr400_0.5 400 39816 0.498947 13 11 13*

sanr400_0.7 400 23931 0.299887 21 18 20

MANN_a27 378 702 0.009852 126 122 125

MANN_a45 1035 1980 0.0037 345 338 342

C2000.5 2000 999164 0.499832 > = 16 13 16*

An Ant Colony Optimization Approach for the Maximum Independent Set Problem 455

Table 5. Comparisons of computational results with other heuristic algorithms

Instance
Graph
density

MULT
Avg(best)

GENE
Avg(best)

ITER
Avg(best) DIMACS best ACO-choi

Avg(best)

brock200_2 0.503719 12(12) 10.5(12) 10.5(12) 12 11(11)

brock200_4 0.342261 15.7(17) 15.4(16) 15.5(16) 17 15.8(16)

brock400_2 0.250802 21.7(23) 22.5(24) 23.2(25) 25 23.7(24)

brock400_4 0.251065 21.8(22) 23.6(25) 23.1(24) 25 23.7(24)

brock800_2 0.348677 18.0(19) 19.3(20) 19.1(21) 21 19.6(20)

brock800_4 0.350304 18.0(18) 18.9(20) 19.0(20) 21 19.2(20)

p_hat300-1 0.756232 8.0(8) 8.0(8) 8.0(8) 8 8.0(8)

p_hat300-2 0.511081 22.9(25) 25(25) 25(25) 25 25.0(25)

p_hat300-3 0.255518 31.0(32) 34.6(36) 35.1(36) 36 35.1(36)

p_hat700-1 0.750668 9.1(10) 9.8(11) 9.9(11) 11 10.5(11)

p_hat700-2 0.49392 35.5(37) 43.5(44) 43.6(44) 44 41.6(42)

p_hat700-3 0.246392 49.5(52) 60.4(62) 61.8(62) 62 55.4(57)

p_hat1500-1 0.756232 10.2(11) 10.8(11) 10.4(11) 12 10.9(11)

p_hat1500-2 0.511018 46.9(48) 63.8(65) 63.9(65) 65 58.9(60)

p-hat1500-3 0.255518 64.3(67) 92.4(94) 93.0(94) 94 84.5(89)

DSJC500.5 0.498004 12.0(12) 12.2(13) 12.1(13) 15 12.8(13)

DSJC1000.5 0.499848 13.1(14) 13.3(14) 13.5(14) 15 13.7(14)

hamming8-4 0.360784 15.7(16) 16.0(16) 16.0(16) 16 16.0(16)

hamming10-4 0.171065 32.0(33) 37.7(40) 38.8(40) 40 36.1(37)

keller4 0.350877 11.0(11) 11.0(11) 11.0(11) 11 11.0(11)

keller5 0.248454 23.9(25) 26.0(27) 26.3(27) 27 23.7(24)

MANN_a27 0.009852 124.8(125) 125.6(126) 126.0(126) 126 124.5(125)

MANN_a45 0.0037 339.7(340) 342.4(343) 343.1(345) 345 341.3(342)

C125.9 0.101548 32.6(33) 33.8(34) 34.0(34) 34 32.7(33)

C500.9 0.099543 46.7(48) 52.2(56) 52.7(55) 57 50.5(52)

C2000.5 0.499832 14.1(15) 14.2(15) 14.2(15) 16 15.7(16)

MULT GENE ITER ACO

86

84

88

90

92

94

96

% The percentage of closeness to DIMACS

Figure 4. The percentage of closeness to
DIMACS.

Table 6. Computational results for different value
of R

Instance graph
density range R independent set

MANN_a27 0.0098 0.9 0.1 106 125

MANN_a45 0.0037 0.9 0.1 262 342

C125.9 0.1015 0.9 0.1 32 33

C2000.5 0.4998 0.9 0.1 16 14

DSJC500.5 0.4980 0.9 0.1 13 12

p_hat700-1 0.7506 0.9 0.1 11 10

456 Hwayong Choi․Namsu Ahn․Sungsoo Park

Local information is calculated in the neighbour
set of   ∪ . For a sparse graph, devi-
ation of local information  of vertices is small.
Since the number of chosen vertices by local in-
formation can be a few, large range R has no
meaning. So, for a sparse graph, it is a good ap-
proach to give a small value to the range R. On
the other hand, for a dense graph, deviation of lo-
cal information  of vertices is large. If the
range R is large, vertices having large local in-
formation are remaining. Therefore giving a large
value to the range R is appropriate to find the
maximum independent set.

6. Conclusions and future works

In this research, ACO is modified to solve the
MISP, which is a one of the well-known NP-hard
problems. Numerical experiments are included to
show the performance of the proposed ACO, and
the obtained results indicate that the ACO is ef-
fective for solving the MISP.

In this research, all the numerical experiments
are performed with the parameters found from the
proposed evolutionary operation. But this approach
isn’t complete and optimal. So according to the
characteristic of graphs, optimal way of combining
the parameter can be a direction for the future
research.

At concept of ant colony optimization, ants are
scattered at one time. But computer complier scat-
ters one ant at a time. So computation time of
proposed ACO in this paper is little slower than
other algorithms. In further speed of ACO algo-
rithm can be improved by parallel programming

of supercomputer or other methods.

References

Bondy, J. A. and Murty, U. S. R. (1976), Graph Theory
with Application, American Elsevier Publishing.

DIMACS directories, Second DIMACS implementation cha-
llenge.

http://dimacs.rutger.edu/Challenges/index.html
Dorigo, M. and Gambardella, L. M. (1997), Ant colony sys-

tem : a cooperative learning approach to the traveling
salesman problem, IEEE Transactions on Evolutionary
Computation, 1(1), 53-66.

Gambardella, L. M., Taillard, E. D., and Dorigo, M. (1999),
Ant Colonies for the Quadratic Assignment Problem,
Journal of the Operational Research Society, 50(2), 167-
176.

Gambardella, L. M., Taillard, E. D., and Giovanni, A.
(1999), A Multiple Ant Colony System for Vehicle Rou-
ting Problems with Time Windows, Advanced Topics In
Computer Science Series. Mcgraw-Hill.

Garey, M. and Johnson, D. (1979), Computers and Intract-
ability- A guide to the Theory of NP-Completeness, W.
H. Freeman and Company.

Gerla, M. and Tsai, J. T-C. (1995), Multicluster, mobile,
multimedia radio network. Wireless Networks, 1(3),
255-265.

Li, Y. and Xu, Z. (2003), An Ant Colony Optimization
Heuristic for Solving Maximum Independent Set Pro-
blems, Computational Intelligence and Multimedia App-
lications, Fifth International Conference 206-211.

Marchiori, E. (2002), Genetic, Iterated and Multistart Local
Search for the Maximum Clique Problem, Applications
of Evolutionary Computing, 2279.

Montgomery, D. C. (1970), Adaptive Control of Exponential
Smoothing Parameters by Evolutionary Operation, IIE
Transactions, 2(3), 268-269.

Parpinelli, R., Lopes, S. H. S. and Freitas, A. A. (2002),
Data mining with an ant colony optimization algorithm,
IEEE Transactions on Evolutionary Computation, 6(4),
321-332.

