• Title/Summary/Keyword: ACI 기준

Search Result 171, Processing Time 0.022 seconds

A Study on Shear Strength Prediction for Reinforced High-Strength Concrete Deep Beams Using Softened Strut-and-Tie Model (연화 스트럿-타이 모델에 의한 고강도 철근콘크리트 깊은 보의 전단강도 예측에 관한 연구)

  • Kim, Seong-Soo;Lee, Woo-Jin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.4
    • /
    • pp.159-169
    • /
    • 2003
  • In the ACI Code, the empirical equations governing deep beam design are based on low-strength concrete specimens with $f_{ck}$ in the range of 14 to 40MPa. As high-strength concrete(HSC) is becoming more and more popular, it is timely to evaluate the application of HSC deep beam. For the shear strength prediction of HSC deep beams, this paper proposed Softened Strut-and-Tie Model(SSTM) considered HSC and bending moment effect. The shear strength predictions of the proposed model, the Appendix A Strut-and-Tie Model of ACI 318-02, and Eq. of ACI 318-99 11.8 are compared with the experimental test results of 4 deep beams and the collected experimental data of 74 HSC deep beams, compressive strength in the range of 49~78MPa. The proposed SSTM performance consistently reproduced 74 HSC deep beam measured shear strength with reasonable accuracy for a wide range of concrete strength, shear span-depth ratio, and ratio of horizontal and vertical reinforcement.

Compressive Stress Distribution of Concrete for Performance-Based Design Code (성능 중심 설계기준을 위한 콘크리트 압축응력 분포)

  • Lee, Jae-Hoon;Lim, Kang-Sup;Hwang, Do-Kyu
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.3
    • /
    • pp.365-376
    • /
    • 2011
  • The current Concrete Structural Design Code (2007) prescribe the equivalent rectangular stress block of the ACI 318 Building Code as concrete compressive stress distribution for design of concrete structures. The rectangular stress block may be enough for flexural strength calculation, but realistic stress-strain relationship is required for performance verification at selected limit state in performance-based design. Moreover, the ACI rectangular stress block provides non-conservative flexural strength for high strength concrete columns. Therefore a new stress distribution model is required for development of performance-based design code. This paper proposes a concrete compressive stress-strain distribution model for design and performance verification. The proposed model has a parabolic-rectangular shape, which is adopted by Eurocode 2 and Japanese Code (JSCE). It was developed by investigation of experimental test results conducted by the authors and other researchers. The test results cover high strength concrete as well as normal strength concrete. The stress distribution parameters of the proposed models are compared to those of the ACI 318 Building Code, Eurocode 2, Japanese Code (JSCE) and Canadian Code (CSA) as well as the test results.

Review of Structural Design Provisions of Rectangular Concrete Filled Tubular Columns (각형 콘크리트충전 강관기둥 부재의 구조설계기준 비교연구)

  • Lee, Cheol Ho;Kang, Ki Yong;Kim, Sung Yong;Koo, Cheol Hoe
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.4
    • /
    • pp.389-398
    • /
    • 2013
  • The structural provisions of rectangular CFT (concrete-filled tubular) columns in the 2005/2010 AISC Specification, ACI 318-08, and EC4 were comparatively analyzed as a preliminary study for establishing the unified standards for composite structures. The provisions analyzed included those related to the nominal strength, the effect of confinement, plate slenderness, effective flexural stiffness, and the material strength limitations. Small or large difference can be found among the provisions of AISC, ACI, and EC4. Generally, the 2010 AISC Specification provides the revised provisions which reflect up-to-date test results and tries to minimize the conflict with the ACI provisions. For example, the 2010 AISC Specification introduced a more finely divided plate slenderness limits for CFT columns. In seismic applications, the plate slenderness limits required for highly and moderately ductile CFT columns were separately defined. However, the upper cap limitations on material strengths in both the AISC and EC4 provisions are too restrictive and need to be relaxed considering the high-strength material test database currently available. This study found that no provisions reviewed in this paper provide a generally satisfactory method for predicting the P-M interaction strength of CFT columns under various material combinations. It is also emphasized that a practical constitutive model, which can reasonably reflect the stress-strain characteristics of confined concrete of rectangular CFT columns, is urgently needed for a reliable prediction of the P-M interaction strength.

Comparison and Evaluation of Current Strut-and-Tie Design Provisions for Reinforced Concrete Deep Beams (철근콘크리트 깊은 보의 현행 스트럿-타이 설계기준에 대한 비교 및 평가)

  • Kim, Jin Woo;Hong, Sung-Gul;Lee, Young Hak;Kim, Heecheul;Kim, Dae-Jin
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.4
    • /
    • pp.305-312
    • /
    • 2014
  • The current American Concrete Institute(ACI), Canadian Standard Associate(CSA) and CEB-FIP Model Code 2010 provisions on the shear strength of a simply supported deep beam suggest that deep beams should be designed using the strut-and-tie model. Although this is a useful methodology to design members in disturbed regions, the quality of the design is highly dependent on the truss model that designers create. However, Hong et al. derived the shear strength equations of reinforced concrete deep beams. This thesis investigates the validity of the current ACI, CSA and CEB-FIP code provisions on the shear strength of simply supported reinforced concrete deep beams by comparing them with the shear strength equations proposed by Hong et al. The comparison shows that all of these code provisions provide reasonable estimates on the shear strength of concrete deep beam members and the selection of an internal truss model plays an important role on the estimation of shear strength.

Shear Strength of Single Anchors in Uncracked and Unreinforced Concrete (비균열·무근콘크리트의 단일앵커 전단내력 평가)

  • Kim, Sung-Yong;Kim, Kyu-Suk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.4
    • /
    • pp.171-181
    • /
    • 2003
  • This study concerns the prediction of shear capacity, as governed by concrete breakout failure, concrete pryout failure and steel failure, of single anchors located close to free edge and located far from a free edge and installed in uncracked, unreinforced concrete. For this purpose, the methods to evaluate the shear capacity of the single anchors in concrete are summarized and the experimental data are compared with capacities by the two present methods: the method of ACI 349-90 and concrete capacity design (CCD) method.

Analysis of High Strength Concrete RC Beams with Tensile Resistance Subjected to Torsion (고강도 콘크리트의 인장강성을 고려한 철근 콘크리트 보의 비틀림 해석)

  • Han, Sam-Heui;Kim, Jong-Gil;Park, Chang-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.6
    • /
    • pp.31-39
    • /
    • 2013
  • The ultimate behavior of high-strength concrete beams is studied with respect to their strength. Thirteen beams were analyzed and the results are presented herein. The variable parameters were the concrete's compressive strength, from 57 to 184 MPa and the amount of lateral torsional reinforcement, from 0.35 to 1.49%. The ultimate torsional strengths from tests were compared with those by this proposed theory and by the ACI code. As a consequence, The ultimate torsional strengths by this proposed theory show the better results than those by the ACI code.

Analysis For Effective Moment For Iinertia For Corrugated Steel-Concrete Composite Deck with I-beam Welded (교량용 I형강 접합 절곡강합성 바닥판의 휨강성 분석)

  • Son, Chang-Du;Park, Jun-Myung;Han, Kyung-Bong;Kim, Jun-Won;Lee, Jae Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.209-212
    • /
    • 2008
  • Corrugated steel-concrete composite deck with I-beam welded is lighter and has higher load carrying capacity than RC slabs due to an I-beam embedded in the corrugated deck. The methods suggested from ACI and design standard of roadway bridge are used to evaluate effective moment inertia of RC structures. This paper presents evaluation and application of effective moment inertia for corrugated steel-concrete composite deck with I-beam welded by using the methods suggested from design standard of roadway bridge, ACI and CEB-FIP MC-90. In order to evaluate effective moment inertia, a series of flexural experiments were carried out. Five beams were built and the parameters considered in the experiments were studs, shape of the sections and connections of the beams. By using the aforementioned methods, effective moments of inertia was calculated and they were compared with the experimental results. As a result, The method suggested from CEB-FIP MC-90 yielded more satisfactory agreement than that from ACI. It was found that the beam has studs showed high load-carrying capacity and high effective moment of inertia.

  • PDF

Torsional Strength of RC Beams Designed according to ACI 318-02 Building Code (ACI 318-02 기준으로 설계된 철근콘크리트 보의 비틀림 강도 검토)

  • Lee, Jung-Yoon;Kim, Sang-Woo;Hyang, Hyun-Bok;Kim, Ji-Hyun;Park, Ji-Sun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.255-258
    • /
    • 2005
  • The current ACI design code does not take into account the contribution of concrete for the torsional moment of reinforced concrete(RC) beams subjected to pure torsion. This code is not capable of evaluating the inter-effects between concrete and torsional reinforcement on the torsional resistance of the RC beams. In this study, 9 RC beams subjected to pure torsion were tested. The main parameter of the beams was the amount of torsional reinforcement and the angle of twist. Test results indicated that the current ACI code over-estimated the torsional strength of RC beams that had larger amount of torsional reinforcement.

  • PDF

Evaluation on the Maximum Yield Strength of Steel Stirrups in Reinforced Concrete Beams (철근콘크리트 보에 사용된 전단보강철근의 항복강도 제한에 대한 평가)

  • Lee, Jin-Eun;Lee, Jung-Yoon
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.6
    • /
    • pp.685-693
    • /
    • 2012
  • The yield strength of shear reinforcement is restricted in the present design codes. In this study, the possibility of the yield strength increase in shear reinforcement is evaluated according to ACI318-08, EC2-02 and CSA-04 by comparing the experimental and calculated results. Three cases were used to analyze the shear strength of the beam. One had no limitation in the yield strength of shear reinforcement, another had restriction on the yield strength of shear reinforcement, and the other had a restriction on the yield strength of shear reinforcement and the shear reinforcement ratio. The study results showed that the case with unlimited shear reinforcement yield strength predicted the test result better than other two cases. Even though the rebar yield strength higher than the strength required in present code was applied to existing shear design equation, the result was reasonable. Therefore, the design equation seemed to be appropriate even if the high-strength shear reinforcement is used in practice based on the existing shear design method.

Cyclic Behavior of High-Performance Fiber-Reinforced Cement Composite Coupling Beam Having Diagonal Reinforcement (대각철근을 갖는 고성능 섬유보강 시멘트 복합체 연결보의 이력거동 평가)

  • Kwon, Hyun-Wook;Jeon, Yong-Ryul;Lee, Ki-Hak;Shin, Myung-Su;Han, Sang-Whan
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.6
    • /
    • pp.649-656
    • /
    • 2013
  • Coupled shear walls can provide an efficient structural system to resist lateral force. However, the reinforcement detail for diagonally reinforced coupling beams required by ACI-318 often causes the difficulties in construction due to the reinforcement congestion and interference among reinforcement. This paper is to evaluate cyclic behavior of High-Performance Fiber-Reinforced Cement Composite (HPFRCC) coupling beams having reduced transverse reinforcement around the beam perimeter. Experimental test was conducted using three specimens having a beam aspect ratio 2.0. Test results showed that HPFRCC coupling beams with half of transverse reinforcement required by ACI-318 provided similar energy dissipation capacities compared with the coupling beams having reinforcement satisfy the requirement of ACI-318.