• Title/Summary/Keyword: ACE inhibitory

Search Result 430, Processing Time 0.023 seconds

ACE-Inhibitory Properties of Proteolytic Hydrolysates from Giant Jellyfish Nemopilema nomurai

  • Yoon, Ho-Dong;Kim, Yeon-Kye;Lim, Chi-Won;Yeun, So-Mi;Lee, Moon-Hee;Moon, Ho-Sung;Yoon, Na-Young;Park, Hee-Yeon;Lee, Doo-Seog
    • Fisheries and Aquatic Sciences
    • /
    • v.14 no.3
    • /
    • pp.174-178
    • /
    • 2011
  • This study aimed to determine the degree of hydrolysis and angiotensin-I-converting enzyme (ACE)-inhibitory activity of Giant Jellyfish Nemopilema nomurai (jellyfish) hydrolysates. The degree of hydrolysis using six proteolytic enzymes (Alcalase, Flavozyme, Neutrase, papain, Protamex, and trypsin) ranged from 13.1-36.8% and the inhibitory activities from 20.46-79.58%. Using papain hydrolysate, we newly isolated and characterized ACE-inhibitory peptides with a molecular weight of 3,000-5,000 Da that originated from jellyfish collagen. The purified peptide (FII-b) was predicted to be produced from an alpha-2 fragment of the type IV collagen of jellyfish. The N-terminal sequence of FII-b was Asp-Pro-Gly-Leu-Glu-Gly-Ala-His-Gly- and showed 87% identity to the collagen type IV alpha-2 fragment of Rattus norvegicus and a predicted protein from Nematostella vectensis, indicating that the ACE-inhibitory peptide originated from the collagen hydrolysate and had an $IC_{50}$ value of 3.8 ${\mu}g$/mL. The primary structure of the fragment is now being studied; this peptide represents an interesting new type of ACE inhibitor and will provide knowledge of the potential applications of jellyfish components as therapies for hypertension.

Effects of Salted-Fermented Fish Products and Their Alternatives on Angiotensin Converting Enzyme Inhibitory Activity of Kimchi During Fermentation (젓갈 및 젓갈 대용 부재료가 김치의 숙성 중 Angiotensin 전환효소 저해작용에 미치는 영향)

  • Park, Douck-Choun;Park, Jae-Hong;Gu, Yeun-Suk;Han, Jin-Hee;Byun, Dae-Seok;Kim, Eun-Mi;Kim, Young-Myung;Kim, Seon-Bong
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.4
    • /
    • pp.920-927
    • /
    • 2000
  • Angiotensin converting enzyme(ACE) inhibitory activity of Kimchi added with salted-fermented fish products(SFFP), such as salted-fermented anchovy(SFA), salted-fermented anchovy sauce(SFAS), low salt-fermented anchovy sauce(LSFAS), salted-fermented small shrimp(SFS), low salt-fermented sandlance sauce(LSFSS) and their alternatives, such as oyster hydrolysate(OH), Alaska pollack hydrolysate(APH) and sea-staghorn extract(SSE) were studied during fermentation at $20^{\circ}C,\;10^{\circ}C\;and\;4^{\circ}C$. ACE inhibitory activities of Kimchi samples added with SFFP were increased until some fermentation period and then kept similarly constant levels at every fermentation temperature. Similar tendencies were occurred in amino nitrogen (AN) content. ACE inhibitory activities of Kimchi samples added with SFFP alternatives rapidly increased in 1st or 2nd day fermentation and then very slowly increased but AN contents showed roughly constant levels $(400{\sim}600\;mg/100\;g)$ in every fermentation temperature. Kimchi added with LSFAS had higher ACE inhibitory activity (>80%) with elevated level of AN (>600 mg/100 g) among the tested Kimchi samples. Kimchi samples added with SFFP alternatives also showed comparable activity to Kimchi added with SFFP This study shows that Kimchi added with SFFP and their alternatives is a good source as a functional food.

  • PDF

Fractionation of Angiotensin Converting Enzyme(ACE) Inhibitory Peptides from Soybean Paste (된장으로부터 Angiotensin Converting Enzyme(ACE) 저해 Peptide의 분획)

  • Shin, Zae-Ik;Ahn, Chang-Won;Nam, Hee-Sop;Lee, Hyung-Jae;Lee, Hyung-Joo;Moon, Tae-Hwa
    • Korean Journal of Food Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.230-234
    • /
    • 1995
  • Angiotensin converting enzyme(ACE) inhibitory peptides lowering blood pressure were fractionated from a commercial soybean paste(Doenjang). When the freeze-dried sample of soybean paste was extracted with cold water, the recovery yield of total nitrogen(TN) was shown to be 73.3% in 30 minutes. The cold water extract was filtered through PM-10 membrane(Amicon) for 3 hours in order to remove high molecular weight polypeptides. The TN and salt of ultrafiltrate were recovered to 80.8% and 99.2%, respectively, and its ACE $IC_{50}$ was $41.8{\mu}g/ml$. When the ultrafiltrate was divided into 7 fractions by reverse phase prep-HPLC, F5 fraction showed the highest ACE inhibitory activity ($IC_{50}=6.8{\mu}g/ml$) and salt could be collected into F1 fraction. Subsequently, the F5 fraction was divided into another five fractions by ion exchange prep-HPLC, all of which appeared to be high ACE inhibitory activity($IC_{50}=2.5{\sim}8.3{\mu}g/ml$). Among them, F53 fraction had the highest ACE inhibitory activity, and its main amino acid component was found to be histidine.

  • PDF

Inhibitory Effect on Angiotensin-converting Enzyme (ACE) and Optimization for Production of Ovotransferrin Hydrolysates (Ovotransferrin 가수분해물의 Angiotensin-converting Enzyme 활성억제 효과 및 생산 최적화)

  • Lee, Na-Kyoung;Ahn, Dong-Uk;Park, Keun-Kyu;Paik, Hyun-Dong
    • Food Science of Animal Resources
    • /
    • v.30 no.2
    • /
    • pp.286-290
    • /
    • 2010
  • Angiotensin-converting enzyme (ACE) inhibitory activity and production optimization of ovotransferrin hydrolysates were studied. Ovotransferrin was hydrolyzed by several enzymes (protamex, alcalase, trypsin, pepsin, neutrase, and flavorzyme) and acid (0.03 N HCl). Ovotransferrin hydrolysate reduced ACE activity by 60.2%, 55.8%, and 42.6% when treated with trypsin, acid, and pepsin, respectively. Trypsin was selected for production of peptide having maximum AC inhibitory effect, which was greatest with 7 h hydrolysis. Central composite design determined that optimum composition of ACE inhibitory substances using substrate concentration of 20-35%, temperature of $35-55^{\circ}C$, and pH of 6.0-8.0. The optimum composition was 1% trypsin, substrate concentration of 26.32%, $51.29^{\circ}C$, and pH 6.32. Under this conditions, a maximum ACE inhibitory effect of 69.1% was evident, similar to the predicted value.

Inhibitory Effect against Angiotensin Converting Enzyme and Antioxidant Activity of Panax ginseng C. A. Meyer Extracts (인삼 추출물의 Angiotensin Converting Enzyme 저해 효과와 항산화 활성)

  • Lee, Seung-Eun;Seong, Nak-Sul;Bang, Jin-Ki;Kang, Seung-Won;Lee, Sung-Woo;Chung, Tae-Yung
    • Korean Journal of Medicinal Crop Science
    • /
    • v.11 no.3
    • /
    • pp.236-245
    • /
    • 2003
  • The study was performed for elucidating angiotensin converting enzyme (ACE) inhibitory activity and comparing antioxidative activity of Panax ginseng extracts prepared at different conditions. Total phenolic content, inhibitory activity on ACE and antioxidative effects were tested on 10 ethanolic extracts and correlation coefficient between total phenolic content and physiological activity was calculated. Yield and total phenolic content of 50% ethanolic extract prepared at $85^{\circ}C$ exhibited the highest value as 42.52% and 0.82%, respectively. Among the fractions obtained from 50% ethanolic extract prepared at room temperature, water fraction showed the highest value in yield as 72.08% and ethyl acetate fraction did in total phenolic content as 6.59%. In the test on ACE inhibitory activity, 50% ethanolic extract obtained at room temperature indicated the strongest effect of 93.8% which was higher than 85.2% of commercialized ACE inhibitor and solvent fractions showed potent inhibitory activity in order of hexane fraction, diethyl ether fraction, ethyl acetate fraction, butanol fraction and water fraction at concentration of $4000{\mu}g/ml$. 50% Ethanolic extract prepared at $85^{\circ}C$ had the most potent inhibition effect on human LDL oxidation as 78.2% at $200{\mu}g/ml$ and the other extracts also did above 60%. Diethyl ether fraction and ethyl acetate fraction showed strong inhibition activity $(34.38%{\sim}78.13%)$ on LDL oxidation at concentration of $10{\sim}200\;{\mu}g/ml$. From the statistical analysis via SAS program, correlation coefficient between total phenolic content and ACE inhibitory effect was 0.6353 at P<0.05. Conclusively, this report showed that the most efficient extraction condition for elevating inhibitory activity on ACE and LDL oxidation, phenolic content and yield from Panax ginseng was 50% ethanol extraction at room temperature or high temperature condition. And Panax ginseng would be used for preventing hypertension or atheroscrelosis for man via inhibitory action on ACE and LDL oxidation.

Effect of Indian Millet Koji and Legumes on the Quality and Angiotensin I-Converting Enzyme Inhibitory Activity of Korean Traditional Rice Wine (수수 입국과 두류 첨가가 전통주의 품질과 엔지오텐신전환효소 저해활성에 미치는 영향)

  • Kim, Jae-Ho;Jeong, Seung-Chan;Kim, Na-Mi;Lee, Jong-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.35 no.4
    • /
    • pp.733-737
    • /
    • 2003
  • To develop a high-valuable Korean traditional rice wine having antihypertension, effects of some cereal kojis and legumes on alcohol fermentation and angiotensin I-converting enzyme (ACE) inhibitory activity of Korean traditional rice wine were investigated. Korean traditional rice wine brewed by addition of 10% Indian-millet koji into the mash showed the greatest ACE inhibitory activity of 43.0% and good ethanol productivity. The ACE inhibitory activity increased up to 69.2% by addition of 50% of mungbean powder and 1% of dandelion petal into the mash.

Inhibitory Effects of Eucommia ulmoides Extract on Angiotensin Converting Enzyme (두충차 추출물의 Angiotensin Converting Enzyme 저해효과)

  • Shon, Mi-Yae;Nam, Sang-Hae
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.36 no.12
    • /
    • pp.1511-1516
    • /
    • 2007
  • To assess a potential possibility of Eucommia ulmoides (EU) as a functional food, anti-hypertensive materials of EU were isolated by silica gel column, thin layer and reverse phase column chromatographies, and then ACE (angiotensin-converting emzyme) inhibitory activities of different parts (leaf, bark, and stem) were investigated. The isolated compound, 8A, was pinoresinol-4,4'-di-O-${\beta}$-D-glucoside (below PDG) originating from Eucommial Cortex and its purity was 95.64%. Of all the samples tested, PDG in raw bark and roasted bark was the highest level at 135.13 mg% and 163.67 mg%, respectively. In ACE inhibitory activity at 10 mg/mL of EU extracts, roasted leaf, raw bark, and roasted bark were 77.56%, 75.73%, and 75.73%, respectively. ACE activities at 1 mg/mL were shown to be 91.87% for PDG, 97.06% for $Enalapril^{(R)}$, and 90.32% for $Captopril^{(R)}$.

Isolation of Angiotensin Converting Enzyme Inhibitory Peptide from Beef Bone Extract Hydrolysate

  • Park, Eun-Hee;Cho, Yong-Sik;Song, Kyung-Bin
    • Applied Biological Chemistry
    • /
    • v.41 no.4
    • /
    • pp.270-272
    • /
    • 1998
  • Angiotensin converting enzyme (ACE) inhibitor was isolated from beef bone extract hydrolysate. After hydrolysis of beef bone extract with a commercial protease, ACE inhibitory peptide was purified by using ultrafiltration, gel permeation chromatography, and reverse-phase high pressure liquid chromatography. The purified ACE inhibitor was a pentapeptide, Gly-Pro-X-Gly-Pro.

  • PDF

Angiotensin-Converting Enzyme Inhibitory Activity of Enzymatic Hydrolysates of Crassostrea gigas (Oyster) (굴 효소 가수분해물의 angiotensin converting enzyme 저해작용)

  • Do, Hyung-Joo;Park, Hye-Jin;Kim, Ok-Ju;Kim, Andre;Choi, Yeung-Joon;Choung, Se-Young;Ha, Jong-Myung
    • Journal of Life Science
    • /
    • v.22 no.2
    • /
    • pp.220-225
    • /
    • 2012
  • The peptides of enzymatic hydrolysates from oyster were determined by inhibitory activity against angiotensin-converting enzyme. The ACE inhibitory activity of enzymatic oyster hydrolysates increases with hydrolysis time. Among enzymatic oyster hydrolysates, oyster hydrolysates incubated with Protamex showed the best ACE inhibitory activity after 10 h. Hydrolysates were filtered through a HiSep ultrafiltration membrane (M.W. cut-off 30 kDa, 10 kDa) to obtain the peptide fractions with ACE inhibition activity. These fractions were applied to an HPLC column (watchers 120 ODS-AP $250{\times}4.6$ ($5{\mu}m$)). Six active fractions were collected and the range of ACE inhibition was from 29.56 to 85.85%. Peptide was purified from fraction B, showing the highest ACE inhibitory activity, and its sequence was Leu-Gln-Pro. These results suggest that PEH may be beneficial for developing antihypertensive food and drug.

Physiological Functionality of Various Extracts from Danmemil and Legumes (단메밀과 콩 추출물들의 생리 기능성)

  • 김동희;이국영;김나미;이종수
    • The Korean Journal of Food And Nutrition
    • /
    • v.16 no.4
    • /
    • pp.347-352
    • /
    • 2003
  • Physiological functionalities of various extracts from Danmemil and legumes were determined and its optimal extraction conditions were also investigated. Angiotensin I-converting enzyme (ACE) inhibitory activity and tyrosinase inhibitory activity of Danmemil were higher in water extracts (53%, 58%) than those of ethanol extracts. However, its electron-donating ability was the highest in ethanol extracts (72%). ACE inhibitory activity and electron-donating ability of Black bean No. 1 and Taekwangkong(one of bean) were higher in water extracts than those of ethanol extracts, whereas SOD-like activity was the highest in ethanol extracts. ACE inhibitor and tyrosinase inhibitor of Danmemil were maximally extracted when it were treated with 20 times of distilled water at 35$^{\circ}C$ for 24 h and 36 h, respectively. Its electron donating compound was maximally extracted by treatment of 50$^{\circ}C$ for 18 h. ACE inhibitor of Black bean No. 1 was extracted maximally when it was treated with distilled water (1 :20) at 20$^{\circ}C$ for 24 h, whereas the other functional compounds were maximally extracted at 20$^{\circ}C$ for 18 h.