• Title/Summary/Keyword: AC-PDP(AC-Plasma Display Panel)

Search Result 240, Processing Time 0.035 seconds

Current-Controlled Driving Method for AC PDP and Experimental Characterization

  • Kim, Joon-Yub;Lim, Jong-Sik
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.2C no.5
    • /
    • pp.253-257
    • /
    • 2002
  • A new Current-Controlled Driving Method that can drive AC PDPs with low voltage and high luminous efficiency for the sustaining period is presented. In this driving method, the voltage source is connected to a storage capacitor and the stored voltage is delivered to the panel through LC resonance. Thus, this driving method can drive the panel with a voltage source as low as about half of the voltage necessary in the conventional driving methods. The discharge current flowing into the AC PDP is limited in this method. Thus, the power consumption for the discharge is reduced and the discharge input power to output luminance efficiency is improved. Experimental results using this driving method showed that we could drive an AC PDP with a voltage source as low as 146V and that high luminous efficiency of 1.33 1m/W can be achieved.

A Novel Multi-Level Type Sustaining Driver for AC Plasma Display Panel (새로운 방식의 멀티레벨 AC PDP 구동장치)

  • Jung Woo-Chang;Kang Kyung-Woo;Yoo Jong-Gul;Ko Jong-Sun;Hong Soon-Chan
    • Proceedings of the KIPE Conference
    • /
    • 2004.07a
    • /
    • pp.425-429
    • /
    • 2004
  • A new multi-level type energy recovery sustaining driver for AC PDP(Plasma Display Panel) is proposed in this paper. The multi-level driver has been developed to reduce the voltage stress on switching elements. Comparing the proposed driver with the conventional multi-level driver, 4 switching elements, 4 diodes, and two auxiliary capacitors are eliminated in the viewpoint of circuit structure. Moreover, the voltage stress on switching elements is more reduced and the sustain period is extended. To verify the validity of the proposed energy recovery circuit, computer simulations using PSpice program are carried out.

  • PDF

The 2-dimensional Discharge Cell Simulation for the Analysis of the Peset and Addressing of an Alternating Current Plasma Display Panel

  • Kim, Joong-Kyun;Chung, Woo-Jun;Seo, Jeong-Hyun;Whang, Ki-Woong
    • Journal of Information Display
    • /
    • v.2 no.1
    • /
    • pp.24-33
    • /
    • 2001
  • The characteristics of the reset and the address discharges of an alternating current Plasma Display Panel (ac PDP) were studied using 2-dimensional numerical discharge cell simulation. We investigated the wall charge variations during the reset discharge adopting ramping reset pulse and the subsequent addressing discharge. The roles of the ramping reset scheme can be divided into two stages, each electrode gathers wall charges during ramping-up of the initial stage and the built-up wall charges are lost during ramping-down of the later stage. Address discharge does not only change the wall charge distributions on the address and the scan electrodes but also on the sustain electrode. The increase in the wall charges on the sustain electrode was observed with the variation of the applied voltage to the sustain electrode during the address period. The increase of the applied voltage to the sustain electrode during the address period is expected to induce the decrease of the sustain voltage during the display period.

  • PDF

Influence of N2 gas mixing ratio on secondary electron emission coefficient of MgO single crystal and MgO protective layer

  • 임재용
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.201-201
    • /
    • 2000
  • AC-PDP(Plasma Display Panel)에 사용하는 MgO 보호막의 이차전자 방출계수(${\gamma}$)는 AC-PDP의 방전특성을 결정짓는 중요한 요소이다. MgO 보호막의 이차전자 방출계수는 AC-PDP에 주입하는 기체의 종류에 영향을 받는다. 현재 AC-PDP에는 방전특성의 향상과 VUV 발생을 위하여 He, Ne, Xe 등의 혼합기체가 사용되고 있으며, N 기체를 혼합하여 사용할 경우 더 좋은 발광효율을 얻을 수 있다는 보고가 있다. 이번 실험에서는 (100) 방향으로 배향된 MgO Bulk Crystal과 MgO 보호막의 이차전자방출계수를 ${\gamma}$-FIB 장치로 N2 기체혼합비율에 따라 측정하였다. 혼합기체는 Ne=N2 이원기체를 여러 가지 혼합 비율로 변화시켜가며 실험하였다. MgO 보호막은 실제 21inch 규격의 Panel을 사용하였다.

  • PDF

Numerical analysis of the striation phenomena in an ac Plasma Display Panel using energy fluid model

  • Bae, Hyun-Sook;Whang, Ki-Woong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.33-36
    • /
    • 2007
  • We performed a discharge analysis on ac plasma display panel through the numerical simulation of the EF (Energy Fluid) model using the electron's energy equation. When it is compared to the results of commonly used LFA (Local Field Approximation) model, there is a clear difference in the spatiotemporal distribution of Xe excited species. In particular, the experimentally observed striation phenomena in the anode region could be observed in EF model and the occurrence of the striation was attributed to the ionization and excitation instability due to the streaming electrons in the anode region plasma.

  • PDF

A Study on the Dielectric Breakdown voltage and Transparency of Dielectric Layer in AC PDP (AC PDP 유전층의 절연파괴 전압과 투명도에 관한 연구)

  • Park, Jeong-Hu;Lee, Seong-Hyeon;Kim, Gyu-Seop;Son, Je-Bong;Jo, Jeong-Su
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.1
    • /
    • pp.39-44
    • /
    • 1999
  • The dielectric layers in AC plasma display panel(PDP) are essential to the discharge cell structure, because they protect metal electrodes from sputtering by positive ion bombarding in discharge plasma and form a sheath of wall charges which are essential to memory function of AC PDP. This layer should have high dielectric breakdown voltage, and also be transparent because the luminance of PDP is strongly correlated this layer. In this paper, we discussed the dielectric breakdown voltage and transparency of the dielectric layer under various conditions. As a result, on the $15\mum$ thickness, the minimum dielectric breakdown voltage was 435V and the transmission coefficient was about 80% after $570^{\circ}C$ firing process. It can be proposed that the resonable dielectric thickness in AC PDP is $15\mum$ because it has about 75V margin on the maximum applied voltage.

  • PDF

A Study on MgCaO Protective Layer and Single Crystal MgO Powder Coating to Improve the Characteristic of AC-PDP (AC-PDP 특성 개선을 위한 MgCaO 보호층과 단결정 MgO 파우더 코팅에 대한 연구)

  • Park, Se-Hun;Wi, Sung-Suk;Kim, Dong-Hyun;Lee, Hae-June;Lee, Ho-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.2
    • /
    • pp.243-250
    • /
    • 2012
  • In this study, we attempted to reduce firing voltage of AC-PDP by alloying MgO protective Layer with CaO. Also, spray coating of single crystal MgO powder has been used to improving Exo-electron emission characteristics and reducing the statistical discharge delay in plasma displays. The properties of discharge depending upon the single crystal MgO powder are investigated. Plasma display having powder coated MgCaO Protective Layer shows lower driving voltage and higher efficacy than of uncoated, conventional panel.

New Sustain driving Method for the low Power consumption In AC PDP (저전력 구동을 위한 AC PDP의 새로운 서스테인 구동방식)

  • Lee, Ji-Hoon;Lee, Don-Kyu;Yoon, Cho-Rom;Lee, Ho-Jun;Park, Cha-Su
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1515-1516
    • /
    • 2006
  • The low luminous efficacy is one of the major demerits of plasma display panel (PDP). In this work we propose the new driving method for high efficiency AC-PDP and analyze its discharge characteristics. The suggested method can control the effective capacitance of panel by external circuit. As a result of the new suggested method, the current becomes less and the discharge time becomes long, because of voltage distribution between panel and auxiliary capacitor. So this method can decrease the power consumption much more than that of the conventional driving method.

  • PDF

A High Speed Address Recovery Technique for Single-Scan Plasma Display Panel(PDP) (Single-Scan Plasma Display Panel(PDP)를 위한 고속 어드레스 에너지 회수 기법)

  • Lee, Jun-Young
    • Proceedings of the KIEE Conference
    • /
    • 2005.05a
    • /
    • pp.239-242
    • /
    • 2005
  • A high speed address recovery technique for AC plasma display Panel(PDP) is proposed. By removing the GND switching operation, the recovery speed can be increased and switching loss due to GND switch also becomes to be reduced. The proposed method is able to perform load-adaptive operation by controlling the voltage level of energy recovery capacitor, which prevents increasing inefficient power consumption caused by circuit loss during recovery operation. Thus, the technique shows the minimum address power consumption according to various displayed images, different from Prior methods operating in fixed mode regardless of images. Test results with 50" HD single-scan PDP(resolution = 1366$\times$768) show that less than 350ns of recovery time is successfully accomplished and about 54% of the maximum power consumption can be reduced, tracing minimum power consumption curves.

  • PDF

A High Speed Address Recovery Technique for Single-Scan Plasma Display Panel(PDP) (Single-Scan Plasma Display Panel(PDP)를 위한 고속 어드레스 에너지 회수 기법)

  • Lee Jun-Young
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.9
    • /
    • pp.450-453
    • /
    • 2005
  • A high speed address recovery technique for AC plasma display panel(PDP) is proposed. Replacing GND switch by clamping diode. the recovery speed can be increased by saving GND hold-time and switching loss due to GND switch also becomes also be reduced. The proposed method is able to perform load-adaptive operation by controlling the voltage level of energy recovery capacitor, which prevents increasing inefficient power consumption caused by circuit loss during recovery operation. Test results with 50' HD single-scan PDP(resolution = 1366$\times$768) show that less than 3sons of recovery time is successfully accomplished and about$54\%$ of the maximum power consumption can be reduced, tracing minimum power consumption curves.