• Title/Summary/Keyword: AC Power Source

Search Result 524, Processing Time 0.021 seconds

Dynamic Voltage Restorer (DVR) for 6.6[kV]/60[Hz] Power Distribution System Using Two Quasi Z-Source AC-AC Converters (두 개의 Quasi Z-소스 AC-AC 컨버터에 의한 6.6[kV]/60[Hz] 배전계통의 동적 전압 보상기(DVR))

  • Oum, Jun-Hyun;Jung, Young-Gook;Lim, Young-Cheol;Choi, Joon-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.2
    • /
    • pp.199-208
    • /
    • 2012
  • This paper proposes a quasi Z-source DVR(Dynamic Voltage Restorer) system with a series connection of the output terminals, to compensate the voltage variations in the 6.6[kV]/60[Hz] power distribution system. The conventional DVR using one quasi Z-source AC-AC converter has the advantage which it can compensate the voltage variations without the need for the additional energy storage device such as a battery, but it is impossible to compensate for the 50[%] under voltage sags. To solve this problem, a DVR system using two quasi Z-source AC-AC converters with the series connection of the output terminals is proposed. By controlling the duty ratio D in the buck-boost mode, the proposed system can control the compensation voltage. For case verification of the proposed system, PSIM simulation is achieved. As a result, in case that the voltage sags-swells occur 10[%], 20[%], 60[%] in power distribution system, and, in case that the 50[%] under voltage sags-swells continuously occur, all case could compensate by the proposed system. Especially, the compensated voltage THD was examined under the condition of the 10[%]~50[%] voltage sags and the 20[${\Omega}$]~100[${\Omega}$] load changes. The compensated voltage THD was worse for the higher load resistances and more severe voltage sags. Finally, In case of the voltage swells compensation, the compensation factor has approached nearly 1 regardless of the load resistance changes, while the compensation factor of voltage sags was related to the load variations.

A New Sustain Driving Method for AC PDP : Charge-Controlled Driving Method

  • Kim, Joon-Yub
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.2C no.6
    • /
    • pp.292-296
    • /
    • 2002
  • A new sustain driving method for the AC PDP is presented. In this driving method, the voltage source is connected to a storage capacitor, this storage capacitor charges an intermediate capacitor through LC resonance, and the panel is charged from the intermediate capacitor indirectly. In this way, the current flowing into the AC PDP when the sustain discharge occurs is reduced because the current is indirectly supplied from a capacitor, a limited source of charge. Thus, the input power to the output luminance efficiency is improved. Since the voltage supplied to the storage capacitor is doubled through LC resonance, this method call drive an AC PDP with a voltage source of about half of the voltage necessary in the conventional driving methods. The experiments showed that this charge-controlled driving method could drive ail AC PDP with a voltage source of as low as 107V. Using a panel of the conventional structure, luminous efficiency of 1.28 lm/W was achieved.

Input AC Voltage Sensorless Control for a Three-Phase Z-Source PWM Rectifier (3상 Z-소스 PWM 정류기의 입력 AC 전압 센서리스 제어)

  • Han, Keun-Woo;Jung, Young-Gook;Lim, Young-Cheol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.3
    • /
    • pp.355-364
    • /
    • 2013
  • Respect to the input AC voltage and output DC voltage, conventional three-phase PWM rectifier is classified as the voltage type rectifier with boost capability and the current type rectifier voltage with buck capability. Conventional PWM rectifier can not at the same time the boost and buck capability and its bridge is weak in the shoot- through state. These problems can be solved by Z-source PWM rectifier which has all characteristic of voltage and current type PWM rectifier. By shoot-through duty ratio control, the Z-source PWM rectifier can buck and boost at the same time, also, there is no need to consider the dead time. This paper proposes the input AC voltage sensorless control method of a three-phase Z-source PWM rectifier in order to accomplish the unity input power factor and output DC voltage control. The proposed method is estimated the input AC voltage by using input AC current and output DC voltage, hence, the sensor for the input AC voltage detection is no needed. comparison of the estimated and detected input AC voltage, estimated phase angle of the input voltage, the output DC voltage response for reference value, unity power factor, FFT(Fast Fourier Transform) of the estimated voltage and efficiency are verified by PSIM simulation.

A Novel Three-Phase Line-Interactive UPS System having AC Line Reactor and Parallel-Series Active Filters (AC 라인 리액터와 병렬 및 직렬 능동필터를 가지는 새로운 3상 라인 인터렉티브 무정전전원장치 시스템)

  • Ji Jun-Keun
    • Proceedings of the KAIS Fall Conference
    • /
    • 2004.06a
    • /
    • pp.193-197
    • /
    • 2004
  • The four-leg Voltage Source Converter(VSC) can use the DC link voltage effectively by the 3-D SVPWM method. Hence the DC battery voltage can be reduced by $15\%$ in comparison to that of the conventional line-interactive UPS system. In this paper a novel line interactive Uninterruptible Power Supply(UPS) using the two four-leg VSCs is proposed. One VSC is in parallel with the ac link reactor of the power source side, and the other is in series with the load. The parallel four-leg voltage source inverter controls the three-phase line voltage independently in order to control the line reactor current indirectly. It eliminates the neutral line current and the active ripple power of the source side using the pqr theory so that unity power factor and the sinusoidal source current can be achieved even though both the source and the load voltages have zero sequence components. The series four-leg voltage source inverter compensates the line voltage and allows it to be balanced and harmonic-free. Both of the parallel and series four-leg voltage source inverters always act as independently controllable voltage sources, so that the three-phase output voltage shows a seamless transition to the backup mode. The feasibility of the proposed UPS system has been investigated and verified through computer simulations results.

  • PDF

The Control of PWM Dual Converters for AC-DC Conversion (AC-DC 변환을 위한 PWM Dual 컨버터의 제어)

  • 정연택;김원철;이사영;조영철;박현준;김길동;이미영
    • Proceedings of the KIPE Conference
    • /
    • 1997.07a
    • /
    • pp.314-317
    • /
    • 1997
  • The purpose of this study is developing a converter which is able to convert a 300[KW] power, and is a DC power supply output a 1500[V] DC voltage for inverter driving. The power converter is driven by two converter serisely and keep a high power factor of power source. This system is haven all the characteristic of voltage source converter by having a processing ability of regenerating power. The two converters controls a PWM modulation and output voltage using a only one 16 bit DSP processor.

  • PDF

Current-Controlled Driving Method for AC PDP and Experimental Characterization

  • Kim, Joon-Yub;Lim, Jong-Sik
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.2C no.5
    • /
    • pp.253-257
    • /
    • 2002
  • A new Current-Controlled Driving Method that can drive AC PDPs with low voltage and high luminous efficiency for the sustaining period is presented. In this driving method, the voltage source is connected to a storage capacitor and the stored voltage is delivered to the panel through LC resonance. Thus, this driving method can drive the panel with a voltage source as low as about half of the voltage necessary in the conventional driving methods. The discharge current flowing into the AC PDP is limited in this method. Thus, the power consumption for the discharge is reduced and the discharge input power to output luminance efficiency is improved. Experimental results using this driving method showed that we could drive an AC PDP with a voltage source as low as 146V and that high luminous efficiency of 1.33 1m/W can be achieved.

Power-factor improvement of residential solar air-conditioner power system (가정용 태양광 에어컨 전원시스템의 역률 개선)

  • Park, Y.J.;Mun, S.P.;Park, J.W.;Suh, K.Y.;Kim, Y.M.
    • Proceedings of the KIEE Conference
    • /
    • 2002.06a
    • /
    • pp.6-8
    • /
    • 2002
  • Generally in solar air conditioning system, the diode rectifier is used to build up DC link voltage from AC source. The diode rectifier is simple and cheap but it brings out the problems of low power factor and plentiful harmonics at the AC source. Also It can degrade the utilization rate of solar energy because the reverse of power flow cannot be made. Hence, in this paper to overcome the peak power problems in summer and to endure good AC input characteristics, solar air conditioning system using the PWM converter is proposed. A high input power factor of 97[%] and an efficiency of 98[%] are also obtained. The harmonic guide lines of proposed rectifier is no interfered with inverter switching, resulting in a simple, reliable and low cost ac to dc converters in comparison with the boost type current improving circuits.

  • PDF

Emission Characteristics of Fluorescent OLED with Alternating Current Power Source Driving Method (교류전원 구동방식에 의한 형광 OLED의 발광 특성)

  • Seo, Jung-Hyun;Kim, Ji-Hyun;Ju, Sung-Hoo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.2
    • /
    • pp.104-109
    • /
    • 2014
  • To operate organic light emitting device (OLED) with alternating current (AC) power source without AC/DC(direct current) converter, we fabricated the fluorescent OLED and measured the emission characteristics with AC and DC. The OLED operated by AC showed higher maximum current efficiency of 8.2 cd/A and maximum power efficiency of 8.3 lm/W. But current efficiency and power efficiency of AC driven OLED showed worse than DC driven OLED at high voltage above 10 V. This result can be explained by the peak voltage of AC was $\sqrt{2}$ times than DC, In case of low driving voltage the emission characteristics were improved by the peak voltage of AC, but in case of high driving voltage the emission efficiencies were decreased by the roll off phenomena. Finally, serial OLED arrays using twelve OLEDs driven by AC 110 V showed average voltage of 9.17 V, voltage uniformity of 99.0%, average luminance of $1,175cd/m^2$, luminance uniformity of 94.4%.

Single-phase SRM Drive with Torque Ripple Reduction and Power Factor Improvement

  • Lee, D.H.;Ahn, J.W.;Lee, Z.G.
    • Proceedings of the KIEE Conference
    • /
    • 2006.04b
    • /
    • pp.57-61
    • /
    • 2006
  • In the single-phase switched reluctance motor (SRM) drive, the required DC source is generally supplied by the circuit consisting of bridge rectifier and large filter capacitor connected with DC line terminal. Due to the large capacity of the capacitor, the charged time of capacitor is very short from the AC source. Lead to the bridge rectifiers draws pulsating current from the AC source side, which results in reduction of power factor and low system efficiency. Therefore a novel single-phase SRM drive system is presented in this paper, which includes drive circuit realizing reduction of torque ripple and improvement of power factor with a novel switching topology. The proposed drive circuit consists of one switching part and diode, which can separate the output of AC/DC rectifier from the large capacitor and supply power to SRM alternately, in order to realize the torque ripple reduction and power factor improvement through the switching scheme. In addition, the validity of the proposed method is tested by some simulations and experiments.

  • PDF

Development of Novel 3-Phase Line-interactive UPS System using 4-leg PWM Converter/Inverter and AC Reactor (4-레그 PWM 컨버터/인버터와 AC 리액터를 사용한 새로운 3상 라인 인터렉터브 무정전전원장치의 개발)

  • Ji Jun-Keun;Kim Hyo-sung;Sul Seung-Ki;Kim Kyung-Hwan
    • Proceedings of the KIPE Conference
    • /
    • 2004.07a
    • /
    • pp.77-81
    • /
    • 2004
  • In this paper a novel line interactive UPS (Uninterruptible Power Supply) using the two 4-leg VSCs and AC line reactor is proposed. The 4-leg Voltage Source Converter(VSC) can use the DC link voltage effectively by the 3-D SVPWM method. Hence the DC battery voltage can be reduced by $15\%$ in comparison to that of the conventional line-interactive UPS system. One VSC is in parallel with the AC line reactor of the power source side, and the other is in series with the load. The parallel 4-leg voltage source inverter controls three-phase line voltage independently in order to control the line reactor current indirectly. It eliminates the neutral line current and the active ripple power of the source side using the pqr theory so that unity power factor and the sinusoidal source current can be achieved even though both the source and the load voltages have zero sequence components. The series 4-leg voltage source inverter compensates the line voltage and allows the load voltage to be balanced and harmonic-free. Both of parallel and series 4-leg voltage source inverters always act as independently controllable voltage sources, so that three-phase output voltage shows a seamless transition to the backup mode. The feasibility of the proposed UPS system has been investigated and verified through computer simulation results.

  • PDF