• 제목/요약/키워드: AC Distribution System

검색결과 228건 처리시간 0.032초

Proposed Distribution Voltage Control Method for Connected Cluster PV Systems

  • Lee, Kyung-Soo;Yamaguchi, Kenichiro;Kurokawa, Kosuke
    • Journal of Power Electronics
    • /
    • 제7권4호
    • /
    • pp.286-293
    • /
    • 2007
  • This paper proposes a distribution voltage control method when a voltage increase condition occurs due to reverse power flow from the clustered photovoltaic (PV) system. This proposed distribution voltage control is performed a by distribution-unified power flow controller (D-UPFC). D-UPFC consists of a hi-directional ac-ac converter and transformer. It does not use any energy storage component or rectifier circuit, but it directly converts ac to ac. The distribution model and D-UPFC voltage control using the ATP-EMTP program were simulated and the results show the voltage increase control in the distribution system.

두 개의 Quasi Z-소스 AC-AC 컨버터에 의한 6.6[kV]/60[Hz] 배전계통의 동적 전압 보상기(DVR) (Dynamic Voltage Restorer (DVR) for 6.6[kV]/60[Hz] Power Distribution System Using Two Quasi Z-Source AC-AC Converters)

  • 엄준현;정영국;임영철;최준호
    • 전기학회논문지
    • /
    • 제61권2호
    • /
    • pp.199-208
    • /
    • 2012
  • This paper proposes a quasi Z-source DVR(Dynamic Voltage Restorer) system with a series connection of the output terminals, to compensate the voltage variations in the 6.6[kV]/60[Hz] power distribution system. The conventional DVR using one quasi Z-source AC-AC converter has the advantage which it can compensate the voltage variations without the need for the additional energy storage device such as a battery, but it is impossible to compensate for the 50[%] under voltage sags. To solve this problem, a DVR system using two quasi Z-source AC-AC converters with the series connection of the output terminals is proposed. By controlling the duty ratio D in the buck-boost mode, the proposed system can control the compensation voltage. For case verification of the proposed system, PSIM simulation is achieved. As a result, in case that the voltage sags-swells occur 10[%], 20[%], 60[%] in power distribution system, and, in case that the 50[%] under voltage sags-swells continuously occur, all case could compensate by the proposed system. Especially, the compensated voltage THD was examined under the condition of the 10[%]~50[%] voltage sags and the 20[${\Omega}$]~100[${\Omega}$] load changes. The compensated voltage THD was worse for the higher load resistances and more severe voltage sags. Finally, In case of the voltage swells compensation, the compensation factor has approached nearly 1 regardless of the load resistance changes, while the compensation factor of voltage sags was related to the load variations.

10톤급 어선에의 DC 배전 전기 추진 선박 적용 (Application of DC distribution IPS to a 10t Class Fishing Boat)

  • 손영광;최세화;이승용;김소연;설승기
    • 전력전자학회논문지
    • /
    • 제22권4호
    • /
    • pp.353-359
    • /
    • 2017
  • To take advantage of electric propulsion, several large vessel kinds, namely, cruise vessels, icebreakers, drill ships, and warships, have been generally designed with Integrated Power System (IPS). Although most of these vessels have adopted AC distribution IPS, DC distribution IPS ships have recently emerged as a new promising technology thanks to the availability of the products related to the DC distribution system, in which the system's major advantages over AC distribution are reduced weight and fuel consumption. This paper presents the comparison results of a 10-t class fishing boat for the AC distribution and DC distribution cases. By replacing AC distribution system with DC distribution, 31-41% reduction in the weight of the electrical equipment weight and 20-25% reduction in the fuel consumption are expected.

에너지 효율 향상을 위한 직류/교류 하이브리드 급전시스템의 해석 (DC/AC Hybrid Distribution System Analysis for Improving Energy Efficiency)

  • 이영진;한동화;최중묵;반충환;김동진;최규하
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2010년도 하계학술대회 논문집
    • /
    • pp.244-245
    • /
    • 2010
  • Hybrid distribution system is able to use existing AC load under AC power and DC power by providing existing AC power and proper DC voltage at the same time. and, the future expected DC appliance is also available. Hybrid distribution system is divided into two different type. the one is DC common method and the other is AC common method. This paper design each system, and study operating characteristics for improving energy efficiency.

  • PDF

다병렬 직류배전 시스템의 DC전류 드룹 제어를 이용한 서로 다른 3상 AC/DC컨버터의 병렬운전기법 (The Parallel Operation of Each other three phase AC/DC Converter using DC Current Droop Control for Multi-parallel DC Distribution System)

  • 이희준;홍석진;현승욱;강진욱;김한수;원충연
    • 조명전기설비학회논문지
    • /
    • 제29권6호
    • /
    • pp.42-48
    • /
    • 2015
  • DC distribution system is difficult to compose the single-system because of the capacity restriction of power semiconductors. Therefore, DC Distribution system needs parallel operation of AC/DC converters for increase to system capacity. However, this system generates the circulating current. This paper is reducing the circulating current and safely sharing the load using the proposed DC current droop control method when each other 3-phase AC/DC converter connected. This system confirms through the simulation and experiment. Also, when each other converter of parallel operate. it is compared the response characteristics

Power Flow Study of Low-Voltage DC Micro-Grid and Control of Energy Storage System in the Grid

  • Kim, Dong-Eok
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권2호
    • /
    • pp.549-558
    • /
    • 2017
  • DC distribution has several differences compared to AC distribution. DC distribution has a higher efficiency than AC distribution when distributing electricity at the same voltage level. Accordingly, power can be transferred further with low-voltage DC. In addition, power flow in a DC grid system is produced by only a voltage difference in magnitude. Owing to these differences, operation of a DC grid system significantly differs from that of an AC system. In this paper, the power flow problem in a bipolar-type DC grid with unbalanced load conditions is organized and solved. Control strategy of energy storage system on a slow time scale with power references obtained by solving an optimization problem regarding the DC grid is then proposed. The proposed strategy is verified with computer simulations.

Coordinated Voltage Control Scheme for Multi-Terminal Low-Voltage DC Distribution System

  • Trinh, Phi Hai;Chung, Il-Yop;Kim, Taehoon;Kim, Juyong
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권4호
    • /
    • pp.1459-1473
    • /
    • 2018
  • This paper focuses on voltage control schemes for multi-terminal low-voltage direct current (LVDC) distribution systems. In a multi-terminal LVDC distribution system, there can be multiple AC/DC converters that connect the LVDC distribution system to the AC grids. This configuration can provide enhanced reliability, grid-supporting functionality, and higher efficiency. The main applications of multi-terminal LVDC distribution systems include flexible power exchange between multiple power grids and integration of distributed energy resources (DERs) using DC voltages such as photovoltaics (PVs) and battery energy storage systems (BESSs). In multi-terminal LVDC distribution systems, voltage regulation is one of the most important issues for maintaining the electric power balance between demand and supply and providing high power quality to end customers. This paper focuses on a voltage control method for multi-terminal LVDC distribution system that can efficiently coordinate multiple control units, such as AC/DC converters, PVs and BESSs. In this paper, a control hierarchy is defined for undervoltage (UV) and overvoltage (OV) problems in LVDC distribution systems based on the control priority between the control units. This paper also proposes methods to determine accurate control commands for AC/DC converters and DERs. By using the proposed method, we can effectively maintain the line voltages in multi-terminal LVDC distribution systems in the normal range. The performance of the proposed voltage control method is evaluated by case studies.

Phase Angle Control in Resonant Inverters with Pulse Phase Modulation

  • Ye, Zhongming;Jain, Praveen;Sen, Paresh
    • Journal of Power Electronics
    • /
    • 제8권4호
    • /
    • pp.332-344
    • /
    • 2008
  • High frequency AC (HFAC) power distribution systems delivering power through a high frequency AC link with sinusoidal voltage have the advantages of simple structure and high efficiency. In a multiple module system, where multiple resonant inverters are paralleled to the high frequency AC bus through connection inductors, it is necessary for the output voltage phase angles of the inverters be controlled so that the circulating current among the inverters be minimized. However, the phase angle of the resonant inverters output voltage can not be controlled with conventional phase shift modulation or pulse width modulation. The phase angle is a function of both the phase of the gating signals and the impedance of the resonant tank. In this paper, we proposed a pulse phase modulation (PPM) concept for the resonant inverters, so that the phase angle of the output voltage can be regulated. The PPM can be used to minimize the circulating current between the resonant inverters. The mechanisms of the phase angle control and the PPM were explained. The small signal model of a PPM controlled half-bridge resonant inverter was analyzed. The concept was verified in a half bridge resonant inverter with a series-parallel resonant tank. An HFAC power distribution system with two resonant inverters connected in parallel to a 500kHz, 28V AC bus was presented to demonstrate the applicability of the concept in a high frequency power distribution system.

전력 변환 손실 저감을 위한 하이브리드 주거배전시스템 (A Study on Residential Hybrid Distribution System for Reducing Power Conversion Loss)

  • 변병주;서현욱;최중묵;이영진;최규하
    • 전력전자학회논문지
    • /
    • 제18권5호
    • /
    • pp.413-421
    • /
    • 2013
  • This paper proposes residential hybrid distribution system that can supply AC power and DC power to AC load and DC load at the same time. This hybrid distribution system consists of three parts: bidirectional inverter, step-up converter and step-down converter. Also that is used to supply voltage to home application is classified of AC load and DC load as load characteristics. The performance of proposed hybrid distribution system is validated through the hardware implementation and the experimental results.

국내형 직류 배전시스템 제안 및 고장특성 분석 (A Study on the Korea DC Distribution system topologies and its fault characteristics)

  • 변길성;이한상;윤태영;장길수;채우규;김주용
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2011년도 제42회 하계학술대회
    • /
    • pp.486-487
    • /
    • 2011
  • In this paper, a configurable DC distributiong system is being proposed considering national power systems conditions and a comparative analysis of the transient response of the contingencies is performed with the conventional AC systems. DC systems are evaluated as a promising next-generation distribution system that provides reliable operation through high efficiency of energy use and converter control. This paper discusses about the required elements for the national DC distribution system and has analysed the fault characteristics of the AC and DC distribution systems using PSCAD/EMTDC. According to the simulation results, the DC system has improved response, due to the DC/DC converter's charging/discharging characteristics, in terms of voltage and power system characteristics when compared to AC systems.

  • PDF