• 제목/요약/키워드: AC Breakdown Strength

검색결과 136건 처리시간 0.03초

Long-term AC Electrical Treeing Behaviors of Epoxy/Layered Silicate Nanocomposites Prepared by a 3-Roll Mill

  • Park, Jae-Jun
    • Transactions on Electrical and Electronic Materials
    • /
    • 제13권2호
    • /
    • pp.85-88
    • /
    • 2012
  • Studies on the effects of layered silicate content on the AC electrical treeing and breakdown behaviors of epoxy/layered silicate nanocomposites were carried out in needle-plate electrode geometry. Wide-angle X-ray diffraction (WAXD) analysis and transmission electron microscopy (TEM) observation showed that 1 wt% of the multilayered silicate was fully exfoliated into nano-sized monolayers in the epoxy matrix however, over 3 wt% of the silicate was in an intercalated state. When 1 wt% layered silicates were incorporated, an electrical tree was initiated in 439 min and propagated at a speed of 2.3 ${\mu}m$/min after applying 781.4 kV/mm, representing a decreased in starting initiation time by a factor of 11.0 and increase in propagation speed by a factor 8.2 in comparison with neat epoxy resin. These values were in great decline after the layered silicate content was increased to 3wt% which implies that the exfoliated silicate blocked the tree initiation and propagation processes effectively. However the effect was largely decreased in the intercalated state.

Insulation Characteristics of the Model Cable for 22.9 kV Class HTS Power Cable

  • Kim, Hae-Jong;Seong, Ki-Chul;Cho, Jeon-Wook;Kwag, Dong-Soon;Cheon, Hyeon-Gweon;Kim, Sang-Hyun
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 하계학술대회 논문집 Vol.6
    • /
    • pp.542-543
    • /
    • 2005
  • In this paper, describes the fabrication and dielectric insulation characteristics experimental results of the model cable for the 22.9kV class HTS power cable. The model cable were tested with partial discharge(PD), AC and impulse withstand voltage in liquid nitrogen($LN_2$) and liquid nitrogen pressure. In these test results, PD inception stress and AC, impulse breakdown strength increase as the pressure of the liquid nitrogen increases.

  • PDF

6.6kV급 케이블 중간접속부의 절연파괴 사고원인 분석과 실험 검증 (The Experimental Verification and Fault Cause Analysis of Breakdown on the 6.6kV class Cable Joint)

  • 김영석;송길목;정진수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.1385_1386
    • /
    • 2009
  • In this paper, we examined the faulted cable joint through the external form analysis, material analysis, experimental verification and it's cause diagnosis system. It was not observed the voild, sharp material from the external form analysis and material variation. From the experimental verification, the thickness decrease of an insulator decreased ac breakdown strength suddenly and the breakdown traces of the insulator that was damaged by knife displayed elliptic shape. Thus, the faulted cable is assumed to accident that become dielectric breakdown by the deterioration of insulation performance that can happen when work.

  • PDF

직류 전계하 LLDPE/EVA혼합필름의 절연파괴특성

  • 고시현;김형주;이종필;신현택;이충호;홍진웅
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 추계학술대회 논문집
    • /
    • pp.65-68
    • /
    • 2000
  • Polyethylene, has long history and is widely used, was researched due to good electrical properties by many authors. But PE under stress has the critical defects of space charge accumulation and tree growth, so various methods such as catalyst, additives and blend to improve these problems have been execute, of which we selected blending method. As in our previous papers we investigated electrical conduction, dielectric and AC dielectric breakdown characteristics, we did DC dielectric breakdown characteristics in this paper. We selected pure LLDPE, pure EVA and LLDPE films mixed with EVA as specimens, which were mixed with the weight percentages of 50, 60, 70 and 80[wt%] to be thin film. DC applying voltage speed was 500[V/sec]. The relation between dielectric breakdown characteristics and the variations of super structure due to mixing was investigated, and especially trap level at amorphous region, threshold energy increment of conductive electron at free volume were considered.

  • PDF

평가시공불량을 모의한 배전급 케이블 종단부의 전기적 사고 연구 (A Study on Electrical Accident of Distributing Cable Termination with Simulated Badness Construction)

  • 최재형;최진욱;김상현;김영석;김선구;백승명
    • 한국화재소방학회:학술대회논문집
    • /
    • 한국화재소방학회 2008년도 추계학술논문발표회 논문집
    • /
    • pp.465-470
    • /
    • 2008
  • This paper introduces experimental investigates of an electrical accident of the distributing cable termination with simulated badness construction. We prepared two termination kites, one is built-up type, the other is heat contraction type. Also, we manufactured cable termination that have simulated defect by badness construction and measured their insulation characteristics such as ac (35kV, 1min) and impulse (95kV, $1.2{\times}50{\mu}s$) withstand test. The influence of defects such as thickness and the gap between stress-con of housing and semi-conductor on insulating properties of the termination have been studied. The thickness decrease of insulator decreases ac breakdown strength. Dielectric breakdown traces of insulator that is damaged by knife displayed other shape. The gap of between housing and semiconductor deteriorates dielectric strength of insulator seriously.

  • PDF

XLPE의 열처리에 의한 결정화도, 가교부산물의 확산에 따른 교류파괴전압 특성 (AC Breakdown Strength According to Crystallinity and Diffusion of Crosslink By-products by Annealing of XLPE)

  • 김영호;이상진;이승엽;최명규
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 C
    • /
    • pp.1608-1610
    • /
    • 2000
  • In this work, the effect of annealing on physical and electrical properties of XLPE cable insulation was investigated. One sample was non-annealed and the other two samples were treated under air circulated oven at 80$^{\circ}C$ for five and ten days. In the DSC patterns of annealed specimen, new peaks appeared at near 80$^{\circ}C$ as a proof of thermal history. The degree of crystallinity increased by annealing effect. In the FT-IR spectrums, the change of absorbances to acetophenone and cumyl alcohol were observated according to the radial direction of cable insulation. They slowly diffused into both semi-conductive layer of the cable in proportion to annealing time and lastly led to near equilibrium state through cable insulation. The AC breakdown strength did not increased but the values were stabilized by effects of crystallinity and diffusion of by-products.

  • PDF

상호침입망목 에폭시수지의 교류 절연파괴특성 및 기계적 특성 (AC Dielectric Breakdown Properties and Mechanical Properties of Interpenetrating Polymer Network Epoxy Resin)

  • 이덕진;김명호;김경환;심종탁;손인환;김재환
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1995년도 추계학술대회 논문집
    • /
    • pp.320-323
    • /
    • 1995
  • In this paper, in order to improve withstand voltage properties of epoxy resin, IPN(interpenetrating polymer network) method was introduced and the influence was investigated. The sing1e network structure specimen(E series), simultaneous interpenetrating polymer network specimen(EMF series) and pseudo interpenetrating polymer network(EMP series) specimen were manufactured. In order to understand the internal structure properties, scanning electron microscopy method was utilized, rind glass transition temperature was measured. Also, AC voltage dielectric strength, tensile strength and impact strength were measured to investigate influence upon electrical and mechanical properties. As a result, it was confirmed that simultaneous interpenetrating polymer network specimen was the most execellent.

  • PDF

흡수열화에 따른 Epoxy/$SiO_2$ 복합체의 전기적 특성 및 수명예측 (Electrical Properties and Lifetime Prediction of Epoxy/$SiO_2$Composites with Water Absorption Ageing)

  • 김탁용;이덕진;홍진웅
    • 한국전기전자재료학회논문지
    • /
    • 제13권9호
    • /
    • pp.758-763
    • /
    • 2000
  • Dielectric strength of insulators made of epoxy composites rapidly decreases due to ageing to interfaces between the matric resin and filler particles. The adhesion variation of interfaces caused by moisture absorption also alters electrical properties that are the basic characteristics of insulators, particularly, in outdoor use. In this paper, electrical properties of epox/SiO$_2$composites were investigated at boiling absorption condition to observe the influences of moisture. In order to analyze the basic physical properties of samples, scanning electron microscopy and DC, AC and impulse voltage dielectric strength were measured. Also, the breakdown time of samples was measured under AC 6[kV] applied voltage, and the variation of lifetime was verified by using Weibull distribution function.

  • PDF

에폭시/마이크로실리카/나노실리카 혼합 콤포지트의 열적, 전기적 특성 (Thermal, Electrical Properties for Epoxy/Microsilica/Nanosilica Composites)

  • 강근배;권순석;박재준
    • 한국전기전자재료학회논문지
    • /
    • 제25권10호
    • /
    • pp.779-785
    • /
    • 2012
  • The epoxy/micro-and nano-mixed silica composites(EMNC) systems were prepared and the AC insulation breakdown strength was evaluated. Glass transition temperature (Tg) and crosslink density were also measured by dynamic mechanical analyzer(DMA) in order to correlate them with the electrical and mechanical properties, and the effect of silane coupling agent on the electrical properties was also studied. Electrical properties and crosslink density of epoxy/micro-silica composite were noticeably improved by addition of nano-silica and silane coupling agent, and the highest breakdown strength was obtained by addition of 0.5~5 phr of nano-silica and 2.5 phr of silane coupling agent, and the highest tensile and flexural strength were obtained by addition of 2.5 phr of nano-silica.

전력기기용, 에폭시/마이크로 실리카 및 알루미나 복합제의 전기적·기계적 파괴 강도 특성 (Electrical and Mechanical Strength Properties of Epoxy/Micro Silica and Alumina Composites for Power Equipment)

  • 박주언;박재준
    • 한국전기전자재료학회논문지
    • /
    • 제31권7호
    • /
    • pp.496-501
    • /
    • 2018
  • In this study, we prepared 40, 45, 50, 55, 60, 65, and 70 wt% content composites filled in epoxy matrix for two micro silica and three micro alumina types for use as a GIS heavy electric machine. As a filler type of epoxy composite, micro silica composites showed excellent AC breakdown strength properties compared to micro alumina composites in the case of electrical properties of micro silica and alumina. The electrical breakdown properties of micro silica composites increased with increasing filler content, whereas those of micro alumina decreased with increasing filler content. In the case of mechanical properties, the micro silica composite showed improved tensile strength and flexural strength compared with the micro alumina composite. In addition, mechanical properties such as tensile strength and flexural strength of micro silica and alumina composites decreased with increasing filler content. This is probably because O-H groups are present on the surface of silica in the case of micro silica but are not present on the surface of alumina in the case of micro alumina.