• Title/Summary/Keyword: AC/DC conversion

Search Result 244, Processing Time 0.028 seconds

Characteristics of DC 48[V] telecommunication power supply (DC 48[V] 통신용 전원 장치의 특성)

  • Jung, H.T.;Jo, M.C.;Youn, Y.T.;Kim, J.Y.;Mun, S.P.;Suh, K.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1820-1822
    • /
    • 2005
  • The AC-DC converter, which has three-phase AC power as input and isolated DC power as output is used for the regulated DC power supply of the telecommunication power processing system for several kilowatt class applications. The conventional DC power supply for the telecommunication power system comprises a PWM rectifier with sine-wave shaping input current unity power factor and a DC/DC converter connected to the PWM converter, which obtains DC 48[V]. Since power passes through these two power stage converters, the conversion power loss is difficult to provide high efficiency. To resolve these problems, this paper presents a new PWM rectified as a 1-stage power conversion method. It simulation and experimental results as proved from a practical point of view that 92.1[%]of conversion efficiency and input current which can meet harmonics regulation of the Class-A in IEC61000-3-3 are achieved.

  • PDF

Universal power converter using High-Speed Switching (고속 스위칭에 의한 만능 전려변화기 구성)

  • Isnanto, Isnanto;Budhi, Prayoga;Choi, Woo-seok;Park, Sung-jun
    • Proceedings of the KIPE Conference
    • /
    • 2013.07a
    • /
    • pp.337-338
    • /
    • 2013
  • Combination the several type of single phase power conversion utilized simply topology are proposed in this paper. Totally four kind of converter are investigated, they are Boost AC/AC Converter, Buck AC/AC Converter, Boost AC/DC Converter, and Buck DC/AC Converter. Two types action mode are presented to determine the functional of circuit. First is AC chopper action mode, representation of the AC/AC converter. AC chopper action mode offered the sinusoidal current waveform, better power factor, faster dynamics, and smaller input/output filter. They present high robustness, offer safe commutation and have high efficiency. The second is full bridge action mode, determined the transformation AC to DC power and otherwise. Four switching devices and one magnetic contactor will establish the mode operation of circuit and manage the flow of power proceed in proper. The correction and advance of the kind of converter are verified by simulation.

  • PDF

Improved Switching Frequency in Delta Modulated Inverter for UPS Applications

  • Sodaban, C.;Tipsuwanporn, V.;Thepsatorn, P.;Piyarat, W.;Witheephanich, K.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.986-989
    • /
    • 2004
  • The concept and results of a simple constant switching frequency delta modulation scheme suitable for DC-AC power conversion in uninterruptable power supply (UPS) applications are presented. Unlike the traditional delta modulation scheme, the scheme has a well defined harmonic spectrum, resulting in a simple filter design and reduced radio interference.

  • PDF

Power Factor Correction of the Single Stage AC/DC Converter with Low Conduction Loss and High Efficiency (고효율, 저손실을 갖는 1단 교류/직류 변환기의 역률제어)

  • 류명효;차영길;최병조;김흥근
    • Proceedings of the KIPE Conference
    • /
    • 1998.07a
    • /
    • pp.418-422
    • /
    • 1998
  • A new single stage AC/DC converter based on the forward converter is proposed. The proposed converter offers both the high power factor and the direct conversion from ac line to dc output voltage. Also, the proposed converter reduces the diode conduction loss, so improves the overall efficiency of the converter, compared with other alternatives. The principles of operation and the simulation results of the proposed converter are presented. A 100 W prototype was built and tested to show the potential of applications of the proposed converter.

  • PDF

Single-stage Power Factor Corrected AC-to-DC Converter for sustain/reset Driving Power Supply of PDP TV (PDP TV의 sustain/reset 구동전원 공급을 위한 1단방식의 역률보상형 AC-to-DC 컨버터)

  • Kang, Feel-Soon;Park, Jin-Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.2
    • /
    • pp.282-289
    • /
    • 2008
  • To improve the efficiency of PDP TV, it should minimize the power losses transpired during AC-to-DC power conversion and PDP driving process. Generally the input power supply for PDP driving employes a two-stage power factor corrected converter, and it needs additional DC-to-DC converters to supply driving power for reset circuit ed sustain driver, which has high power consumption. However, such a circuit configuration has a difficulty for the PDP market requires low cost. To alleviate this problem, a new circuit composition is presented. It integrates input power supply with reset and sustain driver in a single power stack The input power supply of the proposed circuit has a single-stage structure to minimize power conversion loss, and it directly supplies power to the sustain driver so as to reduce the system size and cost.

Analysis of Switching Surge Over-voltage in AC/DC Hybrid Transmission Lines (AC/DC 병가선로의 개폐서지 과전압 해석)

  • Yoo, Seong-Soo;Shin, Koo-Yong;Moon, Chae-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.3
    • /
    • pp.459-466
    • /
    • 2022
  • Switching surges are a common type of phenomenon that occur on any sort of power system network. These are more pronounced on long transmission lines and in high voltage converter stations. At AC/DC hybrid transmission lines, the insulation coordination of such lines is mainly dictated by the peak level of switching surges, the most dangerous of which include three phase line energization and AC/DC converter station. The power system structure consist of AC/DC hybrid transmission lines which is combination of AC 765kV and ±500kV HVDC 1 bipole system for contingency analysis. The power system under study and its components are simulated using EMTDC software package, the effects of the various AC/DC mixing power lines are reviewed. The developed models of EMTDC conversion lines based on combination of AC/DC system are simulated and the characteristics of switching surge over-voltage from its results are discussed.

Implementation of Voltage Sag/Swell Compensator Using Direct Power Conversion Method (직접전력변환 방식을 이용한 전압 sag/swell 보상기의 구현)

  • Cha, Han-Ju;Lee, Dae-Dong
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.1014-1015
    • /
    • 2006
  • In this paper, a new single phase voltage sag/swell compensator using direct power conversion is introduced. A new compensator consists of input/output filter, series transformer and direct at-ac converter, which is a single-phase back-to-back PWM converter without dc-link capacitors. Advantages of the proposed compensator include: simple power circuit by eliminating dc-link electrolytic capacitors and thereby, improved reliability and increased life time of the entire compensator; simple PWM strategy to compensate voltage sag/swell at the same time and reduced switching losses in the ac-ac converter. Further, the proposed scheme is able to adopt simple switch commutation method without requiring complex four-step commutation method commonly required in the direct power conversion. Simulation results are shown to demonstrate the advantages of the new compensator and PWM strategy.

  • PDF

Design and Making of PWM Control-based AC-DC Converter with Full-Bridge Rectifier (전파 정류기를 가지는 PWM 제어 기반의 AC-DC 컨버터 설계 및 제작)

  • Bum-Soo Choi;Sang-Hyeon Kim;Dong-Ki Woo;Min-Ho Lee;Yun-Seok Ko
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.4
    • /
    • pp.617-624
    • /
    • 2023
  • Recently, miniaturization and low power consumption of electronic products and improved efficiency and power factor improvement have become a matter of great interest. In this paper, an AC-DC converter based on PWM control was designed and made. The AC-DC converter is designed with a structure in which one rectifier circuit and one output voltage control circuit are connected in series. The rectifier circuit is a diode-based single phase full-wave current circuit and the output voltage control circuit is a DC-DC conversion circuit based on PWM control. Arduino was used as the main control device for PWM control, and LCD was configured at the output stage so that the control result could be checked. The error between the output voltage displayed on the oscilloscope and LCD and the target output voltage was confirmed through repeated experiments with the test circuit, and the validity of the proposed design methodology was confirmed by showing an error rate of about 5% based on the oscilloscope measurement value.

The Control of PWM Dual Converters for AC-DC Conversion (AC-DC 변환을 위한 PWM Dual 컨버터의 제어)

  • 정연택;김원철;이사영;조영철;박현준;김길동;이미영
    • Proceedings of the KIPE Conference
    • /
    • 1997.07a
    • /
    • pp.314-317
    • /
    • 1997
  • The purpose of this study is developing a converter which is able to convert a 300[KW] power, and is a DC power supply output a 1500[V] DC voltage for inverter driving. The power converter is driven by two converter serisely and keep a high power factor of power source. This system is haven all the characteristic of voltage source converter by having a processing ability of regenerating power. The two converters controls a PWM modulation and output voltage using a only one 16 bit DSP processor.

  • PDF

Dual Utility AC Line Voltage Operated Voltage Source and Soft Switching PWM DC-DC Converter with High Frequency Transformer Link for Arc Welding Equipment

  • Morimoto Keiki;Ahmed NabilA.;Lee Hyun-Woo;Nakaoka Mutsuo
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.4
    • /
    • pp.366-373
    • /
    • 2005
  • This paper presents two new circuit topologies of the dc busline side active resonant snubber assisted voltage source high frequency link soft switching PWM full-bridge dc-dc power converters acceptable for either utility ac 200V-rms or ac 400V-rms input grid. These high frequency switching dc-dc converters proposed in this paper are composed of a typical voltage source-fed full-bridge PWM inverter, high frequency transformer with center tap, high frequency diode rectifier with inductor input filter and dc busline side series switches with the aid of a dc busline parallel capacitive lossless snubber. All the active switches in the full-bridge arms as well as dc busline snubber can achieve ZCS turn-on and ZVS turn-off transition commutation with the aid of a transformer leakage inductive component and consequently the total switching power losses can be effectively reduced. So that, a high switching frequency operation of IGBTs in the voltage source full bridge inverter can be actually designed more than about 20 kHz. It is confirmed that the more the switching frequency of full-bridge soft switching inverter increases, the more soft switching PWM dc-dc converter with a high frequency transformer link has remarkable advantages for its power conversion efficiency and power density implementations as compared with the conventional hard switching PWM inverter type dc-dc power converter. The effectiveness of these new dc-dc power converter topologies can be proved to be more suitable for low voltage and large current dc-dc power supply as arc welding equipment from a practical point of view.