• Title/Summary/Keyword: AC(Activated Carbon)

Search Result 212, Processing Time 0.029 seconds

Adsorption Characteristic of Carbon Dioxide on Activated Carbon Impregnated with Piperazine (Piperazine으로 함침된 활성탄의 이산화탄소 흡착 특성)

  • Choi, Sung-Woo
    • Journal of Environmental Science International
    • /
    • v.22 no.7
    • /
    • pp.847-853
    • /
    • 2013
  • Functionalized adsorbent has been synthesized by piperazine(Pz) on activated carbon. Quantitative estimations of $CO_2$ were undertaken using gas chromatography with GC/TCD and the prepared adsorbents were characterized by BET surface area and FT-IR. It was also studied effect of various parameters such as piperazine loadings and adsorption temperature. The specific surface area decreased from $1212.0m^2/g$ to $969.8m^2/g$ by impregnation and FT-IR revealed a N-H functional group at about $1400cm^{-1}$ to $1700cm^{-1}$. The $CO_2$ adsorption capacity at $20^{\circ}C$ and $50{\sim}100^{\circ}C$ was as follow: AC > Pz(10)-AC> Pz(30)-AC> Pz(50)-AC at $20^{\circ}C$ and Pz(10)-AC > AC > Pz(30)-AC> Pz(50)-AC at $50{\sim}100^{\circ}C$. Therefore, for high temperature flue gas condition, the Pz(10)-AC showed the highest adsorption capacity due to physical adsorption and chemical adsorption by amino-group content. The results suggest that activated carbon impregnated with Pz is an effective adsorbent for $CO_2$ capture from real flue gases above $50^{\circ}C$.

Development of microporous activated carbon using a polymer blend technique and its behavior towards methylene blue adsorption

  • Manocha, S.;Brahmbhatt, Amit
    • Carbon letters
    • /
    • v.12 no.2
    • /
    • pp.85-89
    • /
    • 2011
  • Coloured wastewater is released as a direct result of the production of dyes as well as from various other chemical industries. Many dyes and their breakdown products may be toxic for living organisms. Activated carbon is one of the best materials for removal of dyes from aqueous solutions. The present study describes the adsorption behaviour of methylene blue dye on three microporous activated carbons, where two samples (AC-1 and AC-2) were prepared by a polymer blend technique and the other is a microporous activated carbon (ARY-3) sample from viscose rayon yarn prepared by chemical-physical activation. The effects of contact time and activated carbon dosage on decolourisation capacity have been studied. The results show that activated carbon having mixed microporosity and mesoporosity show tremendous decolourisation capacity for methylene blue. In addition, the activated carbon in the powder form prepared by the polymer blend technique shows better decolourisation capacity for methylene blue than the activated rayon yarn sample.

Adsorption Capacity of H2S on the Impregnated Activated Carbon with NaOH (NaOH 첨착활성탄의 H2S 흡착능)

  • Lee, Suk-Ki;Park, Yeong-Seong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.5
    • /
    • pp.879-886
    • /
    • 2000
  • $H_2S$ adsorption characteristics of activated carbon adsorbent impregnated with NaOH were investigated. The concentrations of NaOH reagent were 1~8N and the particle size of activated carbon was $8{\times}30$ mesh. The experimental results showed that the BET surface area decreases from $1050m^2/g$ to $783m^2/g$ and acidity of activated carbon decreases from 0.541 meq/g-AC to 0 meq/g-AC, while pH increases from 9.56 to 10.86 when the impregnation ratio increases from 0.87% to 5.8%. It was also found that the $H_2S$ adsorption equilibrium capacity of activated carbon impregnated with NaOH increases with increasing temperature and $H_2S$ concentration and varies in the range of 17.87~30.34 mg/g-AC at adsorption temperature of $45^{\circ}C$, which is 2~3 times larger than that of pure activated carbon.

  • PDF

Thermostable Adsorption Filter Immobilized with Super Activated Carbons by Quinoline Soluble Isotropic Pitch Binder (I-a Novel Adsorption Filter)

  • Park, Yeong-Tae;Im, Chul-Gyou;Kim, Yeong-Tae;Rhee, Bo-Sung
    • Carbon letters
    • /
    • v.10 no.3
    • /
    • pp.198-201
    • /
    • 2009
  • Among other filters such as light filter, wave filter, air filter, ultra filter and filter paper, a novel adsorption filter from thermostable polyester nonwoven fabrics immobilized with functional super activated carbon by means of quinoline soluble, activateable isotropic pitch binder were developed in this study. The activated carbon precursor is available in the market branded as coconut shell based activated carbon(CCS-AC) produced by Dongyang Carbon Co. Ltd. BET-surface area of this precursor was $1,355\;m^2/g$, after KOH-activation it increased over $2,970\;m^2/g$ and was named as super activated carbon. In the preliminary research, this precursor was impregnated with $PdCl_2$(0.188 wt%) $KMnO_4$(3 wt%) and redox-agent(CuCl2, 0.577 wt%) in order to promote TOF up to 100/h and Selectivity up 99% and patented as a functional AC for the ethylene adsorption. The enhancement of the isotropic pitch binder to the AC-immobilized adsorption filter was BET-surface area upgraded by $266\;m^2/g$ and promoted the Iodine- and MB-adsorption by 1.4 times, respectively and also micro pore wide ranges < $5{\AA}{\sim}30\;{\AA}$ >.

Adsorption of Low-level CO2using Activated Carbon Pellet with Glycine Metal Salt Impregnation (글리신 금속염 함침 입자상 활성탄의 저농도 이산화탄소 흡착능 평가연구)

  • Lim, Yun Hui;Adelodun, A.A.;Jo, Young Min
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.30 no.1
    • /
    • pp.68-76
    • /
    • 2014
  • The present study has evaluated the $CO_2$ adsorption amount of activated carbon pellets (AC). Coconut shell based test AC were modified with surface impregnation of glycine, glycine metal salts and monoethanolamine for low level $CO_2$ (3000 ppm) adsorption. Physical and chemical properties of prepared adsorbents were analyzed and the adsorbed amount of $CO_2$ was investigated by using pure and 3,000 ppm $CO_2$ levels. The impregnation of nitrogen functionalities was verified by XPS analysis. The adsorption capacity for pure $CO_2$ gas was found to reach upto 3.08 mmol/g by AC-LiG (Activated carbon-Lithium glycinate), which has the largest specific surface area ($1026.9m^2/g$). As for low level $CO_2$ flow the primary amine impregnated adsorbent showed 0.26 mmol/g of adsorption amount, indicating the highest selectivity. An adsorbent with potassium-glycine salts (AC-KG, Activated carbon-Potassium glycinate) instead of amine presented with 0.12 mmol/g of adsorption capacity, which was higher than that of raw activated carbon granules (0.016 mmol/g).

Studies on Electrical Double Layer Capacitor Based on Mesoporous Activated Carbon

  • Meigen, Deng;Yihong, Feng;Bangchao, Yang
    • Carbon letters
    • /
    • v.6 no.2
    • /
    • pp.86-88
    • /
    • 2005
  • Mesoporous activated carbon (AC) was prepared from aged petroleum coke through chemical activation. The AC has a specific surface area of 1733 $m^2/g$ and a mean pore diameter of 2.37 nm. The volume fraction of 2 to 4nm pores is 56.74%. At a current density of 10 mA/$cm^2$, a specific capacitance of 240 F/g is achieved representing the use factor of the surface area of 69.2%. And the electrical double layer capacitor (EDLC) based on the AC shows an excellent power performance. This result suggests that the presence of high fraction of mesopores can effectively increase the adsorption efficiency of the specific surface area of the AC and enhance the power performance of EDLC based on the efficient surface area of the AC.

  • PDF

Purification of Water Contaminants Using Activated Carbon Fiber Filter with Phenolic Resin Coated on Glass Fibers as a Precursor

  • Baek, Il-Hyun
    • Carbon letters
    • /
    • v.1 no.2
    • /
    • pp.82-86
    • /
    • 2000
  • The present research was undertaken to evaluate the possibility of water purification filter with activated carbon fibers (ACFs) using a very low cost precursor consisting of phenolic resin coated on glass fibers. The simplified procedure involving coating, curing and activation and a very low cost glass fiber as a raw material were adopted in order to reduce manufacturing cost. The breakthrough curves of the manufactured ACFs and the commercial activated carbon (AC, Calgon F-200) were investigated in the initial concentration range from 19 to 49 ppm for benzene, toluene and ethylbenzene. From breakthrough profiles, the manufactured ACFs had significantly faster adsorption kinetics than the AC. Especially the benzene breakthrough curves, the manufactured ACF (13 g of ACF with 32% of carbon on the glass) was over the limited level (5 ppb) after flowing of 32 l at initial concentration of 15 ppm, while the commercial AC was shown about 3 ppm in initial adsorption.

  • PDF

Atomic Layer Deposition of Vanadium Pentoxide on Carbon Electrode for Enhanced Capacitance Performance in Capacitive Deionization

  • Chung, Sangho;Bong, Sungyool;Lee, Jaeyoung
    • Applied Chemistry for Engineering
    • /
    • v.33 no.3
    • /
    • pp.315-321
    • /
    • 2022
  • We firstly observed that activated carbon (AC) deposited by atomic-layer vanadium pentoxide (V2O5) was used as CDI electrodes to utilize the high dielectric constant for enhancing the capacitance equipped with atomic layer deposition (ALD). It was demonstrated that the vanadium pentoxide (V2O5) with sub-nanometer layer was effectively deposited onto activated carbon, and the electric double-layer capacitance of the AC was improved due to an increase in the surface charge density originated from polarization, leading to high ion removal in CDI operation. It was confirmed that the performance of modified-AC increases more than 200%, comparable to that of pristine-AC under 1.5 V at 20 mL min-1 in CDI measurements.

Preparation of Novel Sorbents for Gas-phase Mercury Removal

  • Lee, Si-Hyun;Rhim, Young-Jun;Park, Young-Ok
    • Carbon letters
    • /
    • v.3 no.4
    • /
    • pp.187-191
    • /
    • 2002
  • In the present research, we prepared the activated carbon (AC) sorbents to remove gas-phase mercury. The mercury adsorption of virgin AC, chemically treated AC and fly ash was performed. Sulfur impregnated and sulfuric acid impregnated ACs were used as the chemically treated ACs. A simulated flue gas was made of SOx, NOx and mercury vapor in nitrogen balance. A reduced mercury adsorption capacity was obtained with the simulated gas as compared with that containing only mercury vapor in nitrogen. With the simulated gas, the sulfuric acid treated AC showed the highest performance, but it might have the problem of corrosion due to the emission of sulfuric acid. It was also found that the high sulfur impregnated AC also released a portion of sulfur at $140^{\circ}C$. Thus, it was concluded that the low sulfur impregnated AC was suitable for the treatment of flue gas in terms of stability and efficiency.

  • PDF

Adsorption Characteristics of Bisphenol A Using Activated Carbon Based on Waste Citrus Peel and Surface-Modified with P2O5 (P2O5로 표면 개질한 폐감귤박 활성탄에 의한 Bisphenol A의 흡착 특성)

  • Kam, Sang-Kyu;Kim, Myeong-Chan;Lee, Min-Gyu
    • Journal of Environmental Science International
    • /
    • v.27 no.11
    • /
    • pp.1095-1104
    • /
    • 2018
  • The adsorption characteristics of bisphenol A (BPA) were investigated using activated carbon based on waste citrus peel (which is abandoned in large quantities in Jeju Island), denoted as WCP-AC, and surface-modified with various $P_2O_5$ concentrations (WCP-SM-AC). Moreover, coconut-based activated carbon (which is marketed in large amounts) was surface-modified in an identical manner for comparison. The adsorption equilibrium of BPA using the activated carbons before and after surface modification was obtained at nearly 48 h. The adsorption process of BPA by activated carbons and surface-modified activated carbons was well-described by the pseudo second-order kinetic model. The experimental data in the adsorption isotherm followed the Langmuir isotherm model. With increasing $P_2O_5$ concentration (250-2,000 mg/L), the amounts of BPA adsorbed by WCP-SM-AC increased till 1,000 mg/L of $P_2O_5$; however, above 1,000 mg/L of $P_2O_5$, the same amounts adsorbed at 1,000 mg/L of $P_2O_5$ were obtained. With increasing reaction temperature, the reaction rate increased, but the adsorbed amounts decreased, especially for the activated carbon before surface modification. The amounts of BPA adsorbed by WCP-AC and WCP-SM-AC were similar in the pH range of 5-9, but significantly decreased at pH 11, and increased with increasing ionic strength due to screening and salting-out effects.