Browse > Article
http://dx.doi.org/10.5322/JESI.2018.27.11.1095

Adsorption Characteristics of Bisphenol A Using Activated Carbon Based on Waste Citrus Peel and Surface-Modified with P2O5  

Kam, Sang-Kyu (Department of Environmental Engineering, Jeju National University)
Kim, Myeong-Chan (Research Institute of Health & Environment, Jeju Special-Governing Province)
Lee, Min-Gyu (Department of Chemical Engineering, Pukyong National University)
Publication Information
Journal of Environmental Science International / v.27, no.11, 2018 , pp. 1095-1104 More about this Journal
Abstract
The adsorption characteristics of bisphenol A (BPA) were investigated using activated carbon based on waste citrus peel (which is abandoned in large quantities in Jeju Island), denoted as WCP-AC, and surface-modified with various $P_2O_5$ concentrations (WCP-SM-AC). Moreover, coconut-based activated carbon (which is marketed in large amounts) was surface-modified in an identical manner for comparison. The adsorption equilibrium of BPA using the activated carbons before and after surface modification was obtained at nearly 48 h. The adsorption process of BPA by activated carbons and surface-modified activated carbons was well-described by the pseudo second-order kinetic model. The experimental data in the adsorption isotherm followed the Langmuir isotherm model. With increasing $P_2O_5$ concentration (250-2,000 mg/L), the amounts of BPA adsorbed by WCP-SM-AC increased till 1,000 mg/L of $P_2O_5$; however, above 1,000 mg/L of $P_2O_5$, the same amounts adsorbed at 1,000 mg/L of $P_2O_5$ were obtained. With increasing reaction temperature, the reaction rate increased, but the adsorbed amounts decreased, especially for the activated carbon before surface modification. The amounts of BPA adsorbed by WCP-AC and WCP-SM-AC were similar in the pH range of 5-9, but significantly decreased at pH 11, and increased with increasing ionic strength due to screening and salting-out effects.
Keywords
Adsorption characteristics; Bisphenol A (BPA); Waste citrus peel based activated carbon; $P_2O_5$; Surface modification;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Pachamuthu, M. P., Karthikeyan, S., Maheswari, R., Lee, A. F., Ramanathan, A., 2017, Fenton-like degradation of bisphenol A catalyzed by mesoporous Cu/TUD-1, Appl. Surf. Sci., 393, 67-71.   DOI
2 Rezg, R., El-Fazaa, S., Gharbi, N., Mornagui, B., 2014, Bisphenol A and human chronic diseases: current evidences, possible mechanisms, and future perspectives, Environ. Int., 64, 83-90.   DOI
3 Rochester, J. R., 2013, Bisphenol A and human health: a review of the literature, Reprod. Toxicol., 42, 132-155.   DOI
4 Rosenfeld, E. J., Linden, K. G., 2004, Degradation of endocrine disrupting chemicals bisphenol A, ethinyl estradiol, and estradiol during UV photolysis and advanced oxidation processes, Environ. Sci. Technol., 38, 5476-5483.   DOI
5 Ruthven, D. M., 1984, Principles of adsorption and adsorption processes, Wiley, New York, 433.
6 Suzuki, T., Nakagawa, Y., Takano, I., Yaguchi, K., Yasuda, K., 2004, Environmental fate of bisphenol A and its biological metabolites in river water and their xeno-estrogenic activity, Environ. Sci. Technol., 38, 2389-2396.   DOI
7 Tsai, W. T., Lai, C. W., Su, T. Y., 2006, Adsorption of bisphenol-A from aqueous solution onto minerals and carbon adsorbents, J. Hazard. Mater. B., 134(1-3), 169-175.   DOI
8 Vandenberg, L. N., Maffini, M. V., Sonnenschein, C., Rubin, B. S., Soto, A. M., 2009, Bisphenol A and the great divide: a review of controversies in the field of endocrine disruption, Endocr. Rev., 30, 75-95.   DOI
9 Yamanaka, H., Moriyoshi, K., Ohmoto, T., Ohe, T., Sakai, K., 2008, Efficient microbial degradation of bisphenol A in the presence of activated carbon, J. Biosci. Bioeng., 105, 157-160.   DOI
10 Wetherrill, Y. B., Akingbemi, B. T., Kanno, J., McLachlan, J. A., Nadal, A., Sonnenschein, C., Watson, C. S., Zoeller, R. T., Belcher, S. M., 2007, In vitro molecular mechansisms of bisphenol A action, Reprod. Toxicol., 24, 178-198.   DOI
11 Yang, R. T., 1987, Gas seperation by adsorption process, Butterworth, Boston, 352.
12 Zhu, H., Li, W., 2013, Bisphenol A removal from synthetic municipal wastewater by a bioreactor coupled with either a forward osmotic membrane or a microfiltration membrane unit, Front. Environ. Sci. Eng., 7, 294-300.   DOI
13 Deborde, M., Rabouan, S., Duguet, J. P., Legube, B., 2005, Kinetics of aqueous ozone-induced oxidation of some endocrine disruptors, Environ. Sci. Technol., 39, 6086-6092.   DOI
14 Acosta, R., Nabarlatz, D., Sanchez-Sanchez, A., Jagiello, J., Gadonneix, P., Celzard, A, Fierro, V., 2018, Adsorption of bisphenol A on KOH-activated tyre pyrolysis char, J. Environ. Chem. Eng., 6, 823-833.   DOI
15 Asada, T., Oikawa, K., Kawata, K., Ishihara, S., Iyobe, T., Yamada, A., 2004, Study of removal effect of bisphenol-A and ${\beta}$-estradiol by porous carbon, J. Health Sci., 50, 588-593.   DOI
16 Bautista-Toledo, A., Ferro-Garcia, M. A., Rivera-Utrilla, J., Moreno-Castilla, C., Vegas-Fernandez, F. J., 2005, Bisphenol A removal from water by activated carbon. Effects of carbon characteristics and solution chemistry, Environ. Sci. Technol., 39, 6246-6250.   DOI
17 Choi, K. J., Kim, S. G., Kim, C. W., Kim, S. H., 2005a, Effects of activated carbon types and service life on removal of endocrine disrupting chemicals: amitrol, nonylphenol, and bisphenol-A, Chemosphere, 58, 1535-1545.
18 Choi, K. J., Kim, S. G., Kim, C. W., Kim, S. H., 2005b, Effect of polyphosphate on removal of endocrine -disrupting chemicals of nonylphenol and bisphenol-A by activated carbons, Water Qual. Res. J., 40, 484-490.   DOI
19 Choi, K. J., Kim, S. G., Roh, J. S., Shin, P. S., Lee, Y. D., Kim, C. W., 2004, Adsorption characteristics of endocrine disruptors, nonylphenol, and bisphenol-A with activated carbons, J. Korean Soc. Environ. Eng., 26, 191-199.
20 Coughlin, R. W., Ezra, F. S., 1968, Role of surface acidity in the adsorption of organic pollutants on the surface of carbon, Environ. Sci. Technol., 2, 291-297.   DOI
21 Freundlich, H. M. F., 1906, Over the adsorption in solution, J. Phys. Chem., 57, 385-470.
22 Kang, K. H., 2011, Characterisitics of activated carbon prepared from waste citurs peel and its adsorption for VOCs and sulfur-compound, Ph.D. Dissertation, Jeju National University, Korea.
23 Hameed, B. H., 2007, Equilibrium and kinetics studies of 2, 4, 6-trichlorophenol adsorption onto activated clay, Colloids and Surfaces A, 307, 45-52.   DOI
24 Ho, Y. S., McKay, G., 1999, Pseudo-second order model for sorption processes, Process Biochem., 34, 451-465.   DOI
25 Howdershell, K. L., Hotchkiss, A. K., Thayer, K. A., Vandenbergh, J. G., vom Saal, F. S., 1999, Exposure to bisphenol A advances puberty, Nature, 401, 763-764.   DOI
26 Khezami, L., Capart, R., 2005, Removal of chromium (VI) from aqueous solution by activated carbons: kinetic and equilibrium studies, J. Hazard. Mater., 123, 223-231.   DOI
27 Kim, Y. J., 2003, Simultaneous removal of hydrogen sulfide and ammonia by impregnated activated carbon, MS Thesis, Inje Univ., Korea.
28 Lagergren, S., 1898, About the Theory of So-Called Adsorption of Soluble Substances, Kunglia Svenska Vetenskapsa-kademiens Handlingar, 24, 1-39.
29 Koduru, J. R., Lingamdinne, L. P., Singh, J., Choo, K. H., 2016, Effective removal of bisphenol A (BPA) from water using a goethite/activated carbon composite, Process Saf. Environ. Prot., 103, 87-96.   DOI
30 Kuramitz, H., Nakata, Y., Kawasaki, M., Tanaka, S., 2001, Electrochemical oxidation of bisphenol A. Application to the removal of bisphenol A using a carbon fiber electrode, Chemosphere, 45, 37-43.   DOI
31 Langmuir, I., 1918, The adsorption od gases on plane surface of glass, mica and platinum, J. Am. Chem. Soc., 40, 1361-1403.   DOI
32 Lee, M. G., Kam, S. K., Suh, K. H., 2012, Adsorption of non-degradable eosin Y by activated carbon, J. Environ. Sci., 21, 623-631.
33 Lee, M. G., Kim, M. C., Kam, S. K., 2015, Characteristics of surface modified activated carbons prepared using $P_2O_5$ and their adsorptivity of bisphenol A, J. Environ. Sci. Int., 24, 1463-1471.   DOI
34 Lian, F., Song, Z., Liu, Z., Zhu, I., Xing, B., 2013, Mechanistic understanding of tetracycline sorption on waste tire powder and its chars as affected by $Cu^{2+}$ and pH, Environ. Pollut., 178, 264-270.   DOI
35 Liu, G., Ma, J., Li, X., Qin, Q., 2009, Adsorption of bisphenol A from aqueous solution onto activated carbons with different modification treatments, J. Hazard. Mater., 164, 1275-1280.   DOI
36 Lopez-Ramon, V., Moreno-Castilla, C., Rivera-Utrilla, J., Radovic, I. R., 2002, Ionic strength effects in aqueous phase adsorption of metal ions on activated carbon, Carbon., 41, 2009-2025.
37 Newcombe, G., Drikas, M., 1997, Adsorption of NOM onto activated carbon electrostatic and non-electrostatic effects, Carbon, 35, 1239-1250.   DOI
38 Munoz-de-Toro, M., Markey, C. M., Wadia, P. R., Luque, E. H., Rubin, B. S., Sonnenschein, C., Soto, A. M., 2005, Perinatal exposure to bisphenol A alters peripubertal mammary gland development in mice, Endocrinology, 146, 4138-4147.   DOI