• Title/Summary/Keyword: AC(Activated Carbon)

Search Result 212, Processing Time 0.025 seconds

New High-Yield Method for the Production of Activated Carbon Via Hydrothermal Carbonization (HTC) Processing of Carbohydrates

  • Sharma, Sanjeev;Chun, Sang-Eun
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.4
    • /
    • pp.387-393
    • /
    • 2019
  • Activated carbons (ACs) are considered important electrode materials for supercapacitors because their large specific surface areas lead to high charging capacities. In the conventional synthesis of ACs, a substantial amount of carbon is lost during carbonization of a precursor. The development of a method to synthesize ACs in high yield would lower their manufacturing cost. Here, we demonstrate the synthesis of high-specific-surface-area NaOH-AC from carbon prepared via a hydrothermal carbonization (HTC) route, with a higher yield than that achieved through conventional pyrolysis carbonization. The amorphous carbon was derived from HTC of sugar and subsequently activated at 800℃ with various NaOH etchant/C ratios under a N2 atmosphere. The AC prepared at 4:1 NaOH/C exhibited the highest surface area (as high as 2,918 ㎡ g-1) and the highest specific capacitance (157 F g-1 in 1 M aqueous Na2SO4 electrolyte solution) among the NaOH-AC samples prepared in this work. On the basis of their high specific capacitance, the NaOH-ACs prepared from HTC sugar are suitable for use as electrode materials for supercapacitors.

Adsorption Characteristics of BTEX on Dust Collecting Electrode Coated with Activated Carbon (활성탄으로 코팅된 집진전극의 BTEX 흡착특성)

  • Nam, Sangchul;Kim, Hyun Jung;Kim, Kwang Soo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.29 no.6
    • /
    • pp.773-779
    • /
    • 2013
  • This study was performed to provide the basic data for the function of BTEX removal for compact electrostatic precipitator which are applicable to indoor environment (or closed spaces). For this purpose, the adsorption equilibrium test was conducted for BTEX of activated carbon sheet (ACS) and activated carbon (AC), and the adsorption characteristics of AC and ACS were evaluated using the Langmuir constant which was obtained from the adsorption characteristics, adsorption capacity and regression calculation. The surface area and adsorption pore volume of ACS reduced by 70% and 86%, respectively, as compared to those of AC, and the adsorption capacities of BTEX also showed a similar level. Thus, it is considered that ACS applied electrostatic precipitator is able to remove dust and BTEX simultaneously.

Steam Activated Carbon Preparation Using HTFBR from Biomass and its Adsorption Characteristics

  • Asirvatham, J. Herbert;Gargieya, Nikhar;Paradkar, Manali Sunil;Prakash Kumar, B.G.;Lima Rose, Miranda
    • Carbon letters
    • /
    • v.9 no.3
    • /
    • pp.203-209
    • /
    • 2008
  • The objective of this work is to study the feasibility of the preparation of the activated carbon (AC) from coconut tree flowers using high temperature fluidized bed reactor (HTFBR). The activating agent used in this work is steam. The reactor was operated at various activation temperature (650, 700, 750, 800 and $850^{\circ}C$) and activation time (30, 60, 120 and 240 min) for the production of AC from coconut tree flowers. Effect of activation time and activation temperature on the quality of the AC preparation was observed. Prepared AC was characterized in-terms of iodine number, methylene blue number, methyl violet number, ethylene glycol mono ethyl ether (EGME) surface area and SEM photographs. The best quality of AC from coconut tree flowers (CFC) was obtained at an activation temperature and time of $850^{\circ}C$ and 1 hr restectively. The effectiveness of carbon prepared from coconut tree flowers in adsorbing crystal violet from aqueous solution has been studied as a function of agitation time, carbon dosage, and pH. The adsorption of crystal violet onto AC followed second order kinetic model. Adsorption data were modeled using both Langmuir and Freundlich classical adsorption isotherms. The adsorption capacity $q_m$ was 277.78 mg/g., equilibrium time was found to be 180 min. This adsorbent from coconut tree flowers was found to be effective for the removal of CV dye.

Preparation of AC/TiO2 Composites from Activated Carbon Modified by HNO3 and Their Photocatalytic Activity

  • Chen, Ming-Liang;Oh, Won-Chun
    • Carbon letters
    • /
    • v.8 no.2
    • /
    • pp.108-114
    • /
    • 2007
  • In this work, activated carbon (AC) after $HNO_3$ modification was used as the support during the production of supported $TiO_2$ to increase the high deposition efficiency and the photocatalytic activity. The results of $N_2$ adsorption showed that the BET surface area of samples decreased with an increasing of the concentration of $HNO_3$ due to the penetration of $TiO_2$. From XRD data, a single crystal structure of anatase peak was observed in diffraction patterns for the AC coated with titanium complexes. From the SEM results, almost all particles were aggregated with each other at the carbon surface and AC was covered with $TiO_2$ particles in all of the samples. The EDX spectra show the presence of C, O, Ti and other elements. It was also observed a decreasing of amount of C content with increasing Ti and O content from the EDX. The results of FT-IR revealed that the modified AC contained more surface oxygen bearing groups than that of the original AC. The effect of surface acidity and basity calculated from Boehm titration method was also evaluated from correlations as a function of NaOH, $NaHCO_3$, and $Na_2CO_3$ uptake. The surface modification of AC by $HNO_3$ leads to an increase in the catalytic efficiency of AC/$TiO_2$ catalysts, and the catalytic efficiency increases with increasing of $HNO_3$ concentration.

Preparation of Fe-AC/$TiO_2$ composites and pH dependence of their Photocatalytic activity for methylene blue

  • Meng, Ze-Da;Zhang, Kan;Oh, Won-Chun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.19 no.5
    • /
    • pp.268-276
    • /
    • 2009
  • In this study, activated carbon (AC) was treated with ferric ion by a sol-gel method. The compound (Fe-AC) was employed for the preparation of Fe-activated carbon/$TiO_2$, (Fe-AC/$TiO_2$) composites. The prepared Fe-AC/$TiO_2$ composites were characterized with surface properties, structural crystallinity, elemental identification and photocatalytic activity. The SEM results showed that ferric compounds and titanium dioxide were fixed onto the AC surfaces. The XRD results showed that Fe-AC/$TiO_2$ composites mostly contained anatase phase. EDX showed the presence of C, O, and Ti with Fe peaks in all samples. Its photocatalytic degradation effect was evaluated with the degradation behavior of the methylene blue (MB) solution. MB degradation could be attributed to the synergetic effects of adsorption, photo-degradation of $TiO_2$ and photo-Fenton of Fe component. The degradation rate for this photocatalysis was evaluated as a function of the concentration of the dye, the amount of $TiO_2$ and the pH. Photocataytic activity is good at activity pH.

$H_2S$ Adsorption Characteristics and Property Analyses of Activated Carbon Adsorbent Impregnated with Basic Solutions (염기성용액으로 첨착시킨 활성탄의 물성분석 및 $H_2S$ 흡착특성)

  • Lee, Suk-Ki;Yim, Chang-Sun;Park, Yeong-Seong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.11
    • /
    • pp.1011-1016
    • /
    • 2010
  • The $H_2S$ adsorption characteristics and property analyses of granular activated carbon adsorbent impregnated with basic solution such as NaOH, KOH, and $(CH_2CH_2OH)_2NH$ were investigated. The concentrations of NaOH and KOH reagent ranged over 1 to 5 M, The concentration of $(CH_2CH_2OH)_2NH$ was in the range of 0.1 to 1 M. Adsorption temperature($25{\sim}45^{\circ}C$) and adsorbate ($H_2S$) concentration (18.23 mg/L) were applied. The experimental results showed that the BET surface area of activated carbon impregnated with KOH decreases from $1,050\;m^2/g$ to $750\;m^2/g$, and the acidity of activated carbon impregnated with NaOH decreases from 0.541 meq/g-AC to 0 meq/g-AC, as the concentration of basic solution increases, while the pH of impregnated activated carbon increased from 9.54 to 10.94 for three basic solutions. It was also found that the $H_2S$ adsorption equilibrium capacity of activated carbon impregnated with NaOH, KOH, $(CH_2CH_2OH)_2NH$ increased with increasing temperature and $H_2S$ adsorption equilibrium capacity of the activated carbon impregnated with diethanolamine was much higher than other cases. At adsorption temperature of $45^{\circ}C$, the $H_2S$ adsorption equilibrium capacity of impregnated activated carbon was 2.0~3.3 times lager than that of pure activated carbon.

Removal characteristics of chromium by activated carbon/CoFe2O4 magnetic composite and Phoenix dactylifera stone carbon

  • Foroutan, Rauf;Mohammadi, Reza;Ramavandi, Bahman;Bastanian, Maryam
    • Korean Journal of Chemical Engineering
    • /
    • v.35 no.11
    • /
    • pp.2207-2219
    • /
    • 2018
  • Activated carbon (AC) was synthesized from Phoenix dactylifera stones and then modified by $CoFe_2O_4$ magnetic nanocomposite for use as a Cr(VI) adsorbent. Both $AC/CoFe_2O_4$ composite and AC were fully characterized by FTIR, SEM, XRD, TEM, TGA, and VSM techniques. Based on the surface analyses, the addition of $CoFe_2O_4$ nanoparticles had a significant effect on the thermal stability and crystalline structure of AC. Factors affecting chromium removal efficiency like pH, dosage, contact time, temperature, and initial Cr(VI) concentration were investigated. The best pH was found 2 and 3 for Cr adsorption by AC and $AC/CoFe_2O_4$ composite, respectively. The presence of ion sulfate had a greater effect on the chromium sorption efficiency than nitrate and chlorine ions. The results illustrated that both adsorbents can be used up to seven times to adsorb chromium. The adsorption process was examined by three isothermal models, and Freundlich was chosen as the best one. The experimental data were well fitted by pseudo-second-order kinetic model. The half-life ($t_{1/2}$) of hexavalent chromium using AC and $AC/CoFe_2O_4$ magnetic composite was obtained as 5.18 min and 1.52 min, respectively. Cr(VI) adsorption by AC and $AC/CoFe_2O_4$ magnetic composite was spontaneous and exothermic. In general, our study showed that the composition of $CoFe_2O_4$ magnetic nanoparticles with AC can increase the adsorption capacity of AC from 36 mg/L to 70 mg/L.

The effect of the modification methods on the catalytic performance of activated carbon supported CuO-ZnO catalysts

  • Duan, Huamei;Yang, Yunxia;Patel, Jim;Burke, Nick;Zhai, Yuchun;Webley, Paul A.;Chen, Dengfu;Long, Mujun
    • Carbon letters
    • /
    • v.25
    • /
    • pp.33-42
    • /
    • 2018
  • Activated carbon (AC) was modified by ammonium persulphate or nitric acid, respectively. AC and the modified materials were used as catalyst supports. The oxygen groups were introduced in the supports during the modifications. All the supports were characterized by $N_2$-physisorption, Raman, X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and thermogravimetric analysis. Methanol synthesis catalysts were prepared through wet impregnation of copper nitrate and zinc nitrate on the supports followed by thermal decomposition. These catalysts were measured by the means of $N_2$-physisorption, X-ray diffraction, XPS, temperature programmed reduction and TEM tests. The catalytic performances of the prepared catalysts were compared with a commercial catalyst (CZA) in this work. The results showed that the methanol production rate of AC-CZ ($23mmol-CH_3OH/(g-Cu{\cdot}h)$) was higher, on Cu loading basis, than that of CZA ($9mmol-CH_3OH/(g-Cu{\cdot}h)$). We also found that the modification methods produced strong metal-support interactions leading to poor catalytic performance. AC without any modification can prompt the catalytic performance of the resulted catalyst.

Evaluation of the Removal Properties of Cu(II) by Fe-Impregnated Activated Carbon Prepared at Different pH (pH를 달리하여 제조한 3가철 첨착 활성탄에 의한 구리 제거특성 평가)

  • Yang, Jae-Kyu;Lee, Nam-Hee;Lee, Seung-Mok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.3
    • /
    • pp.345-351
    • /
    • 2008
  • Fe-impregnated activated carbon(Fe-AC) was prepared by Fe(III) loading on activated carbon(AC) in various preparation pH. In order to evaluate the stability of Fe-AC, dissolution of iron from Fe-AC in acidic conditions was measured. In addition, batch experiments were conducted to monitor the removal efficiency of copper by Fe-AC. Results of stability test for Fe-AC showed that the amount of extracted iron increased with contact time but decreased with increasing solution pH. The dissolved amount of iron gradually increased at solution pH 2 and finally 13% of the total iron loaded on activated carbon was extracted after 12 hr. However dissolution of iron was negligible over solution pH 3. Removal of Cu(II) by Fe-AC was greatly affected by solution pH and was decreased as solution pH increased as well as initial Cu(II) concentration decreased. Surface complexation modeling was performed by considering inner-sphere complexation reaction and using the diffuse layer model with MINTEQA2 program.

Conversion of Cellulose into Polyols over Noble Metal Catalysts Supported on Activated Carbon (활성탄에 담지된 귀금속 촉매를 이용한 셀룰로우스의 폴리올로의 전환)

  • You, Su-Jin;Kim, Saet-Byul;Kim, Yong-Tae;Park, Eun-Duck
    • Clean Technology
    • /
    • v.16 no.1
    • /
    • pp.19-25
    • /
    • 2010
  • In this work, the conversion of crystalline cellulose into polyols in the presence of hydrogen was examined over noble metal (Pt, Ru, Ir, Rh, and Pd) catalysts supported on activated carbon. For comparison, Pt/${\gamma}-Al_2O_3$ and Pt/H-mordenite were also investigated. Several techniques: $N_2$ physisorption, X-ray diffraction(XRD), inductively-coupled plasma-atomic emission spectroscopy (ICP-AES), temperature-programmed reduction with $H_2$ ($H_2$-TPR) and CO chemisorption were employed to characterize the catalysts. The cellulose conversion was not strongly dependent on the types of the catalyst used. Pt/AC showed the highest yields to polyols among activated carbon-supported noble metal catalysts, viz. Pt/AC, Ru/AC, Ir/AC, Rh/AC and Pd/AC.