• Title/Summary/Keyword: ABS system

Search Result 299, Processing Time 0.032 seconds

Sliding Mode Control of the ABS with a Disturbance Observer (관측기를 가진 ABS 슬라이딩 모드 제어법)

  • Hwang Jin-Kwon;Oh Kyeung-Heub;Song Chul-Ki
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.523-530
    • /
    • 2005
  • This paper addresses sliding mode control (SMC) of the anti-lock braking system (ABS) with a compensator of model uncertainties such as vehicle parameter variation, unmodeled dynamics, and external disturbances. A sliding mode controller (SMC) is designed with a nominal vehicle model to achieve a desired wheel slip ratio. A disturbance observer (DOB) is introduced to compensate the model uncertainties and is designed with a transfer function of a hydraulic brake dynamics. Through simulations on the model uncertainties, it is verified that the sliding mode control with the DOB can give the simulation results better than the sliding mode control without the DOB.

  • PDF

The Filling Balance of LDPE/ABS/PA6,6 Resin in Variable-Runner-System (가변러너시스템에서 LDPE/ABS/PA6,6 수지의 충전균형)

  • Park, H.P.;Cha, B.S.;Kang, J.K.;Rhee, B.O.
    • Transactions of Materials Processing
    • /
    • v.15 no.9 s.90
    • /
    • pp.641-647
    • /
    • 2006
  • During the injection molding process an excessive packing can occur in the smaller volume cavity because of volumetric difference of the family-mold. It causes warpage by increased residual stress in the product and flesh by over packing. In this study, we used a variable-runner system for the filling balance of the cavities by changing the cross-sectional area of a runner, and confirmed the filling imbalance by temperature and pressure sensors. We carried out experiments to examine the influence of types of resins such as LDPE/ABS/PA6,6 on the filling balancing of the system, in order to help mold designers, who can easily adopt the variable-runner system to their design. We also examined filling imbalance in the system with CAE analysis.

A Study on the Braking Characteristics of Control Methods for ABS mounted Vehicle (ABS 장착 자동차의 제어방식에 따른 제동특성에 관한 연구)

  • Choi, Jong-Hwan;Kim, Wung-Su;Yang, Soon-Yong;Park, Sung-Tae;Lee, Jin-Kul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.8
    • /
    • pp.203-211
    • /
    • 2002
  • ABS (Anti-lock Braking System) is a safety device for preventing wheel locking in a sudden braking. It consists of hydraulic modulator, ECU(Electronic Control Unit) and angular velocity sensors. Its control methods are classified into three types; deceleration control, slip ratio control and deceleration/acceleration control. In this paper, ABS mounted vehicle is mathematically modeled and the proposed model is verified by actual cars experiments, and the braking characteristics of the control methods with pulse width modulation are compared and analyzed through computer simulations.

The Viscosity Change of ABS Resin According to Inert Gas Amount (가스의 용해량에 따른 ABS 수지의 점도 변화)

  • 정태형;하영욱;정대진
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.585-590
    • /
    • 1997
  • Conventional foaming process has defects such as lower mechanical properties than ur~foaming material due to non-uniform cell distribution and environmental pollution problem caused by chemical blowing agency. So, a new foaming process such as Microcelluar plastics has been introduced to use inactive gases as a foaming agency. In order to apply Microcellular plastics for mass production process system such as extrusion, injection molding and blow molding, it needs to predict the change in material properties of polymer according to the amount of meltingas. In Polymer molding applying Microcelluar plastics, the change of viscosity among several material properties is the most important factor. Therefore, this paper is aimed to establish the method which not only finds out but also predicts the change of viscosity of ABS(Acrylonitri1e Butadiene Styrene) resin according to inert gas amount in extrusion molding.

  • PDF

The Integrated Circuit Design of Automobile ABS Interface (자동차용 ABS 인터페이스의 IC 설계)

  • Jung, Kyung-Jin;Lee, Sung-Pil;Kim, Chan;Jeon, Eui-Seok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.7-10
    • /
    • 2003
  • ABS interface IC for automobiles was designed and their electrical properties were investigated. The voltage regulator was designed to operate in the temperature range from $-20^{\circ}\;to\;120^{\circ}C$ for automobile environment. ABS and brake signal were separated using the duty factor of same frequency or different frequencies. UVLO circuit and constant current circuit were applied for the elimination of noise.

  • PDF

Study of the Mechanical Properties and Orthotropy of ABS Materials Fabricated by FDM Printing (FDM 프린팅으로 제작된 ABS 소재의 기계적 특성 및 직교이방성 연구)

  • Yoon, Juil
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.5
    • /
    • pp.143-148
    • /
    • 2018
  • 3D printing has been expanding beyond the bio/nano field to the automobile and aviation industries. 3D-printing technology has to overcome real problems to have economic value compared to its unlimited usability. Typically, the difference in mechanical strength along the lamination direction requires sufficient research to ensure reliability. In this paper, we study the anisotropic properties of ABS based on the stacking method of FDM 3D printing. Specifically, the mechanical properties of ABS material are determined through a tensile test and 3-point bending test, and the in-plane orthotropic properties are ascertained.

Brake Performance Analysis of Sliding Mode Controller by Comparing with a Commercial Anti-lock Brake System (상용 ABS와 성능비교를 통한 슬라이딩 모드 제어기의 제동성능 분석)

  • Yun, Duk-Sun;Baek, Seung-Hwan;Kim, Heung-Sup;Song, Jung-Hoon;Boo, Kwang-Suck
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.2
    • /
    • pp.14-23
    • /
    • 2010
  • This paper analyzes braking performance of ABS with Sliding Mode Controller, which is designed in this research and compared with that of a commercial ABS-ECU only. HILS system for this paper has an existing hydraulic brake line with an ECU of commercial passenger vehicle and it is designed to be cooperated with Sliding Mode Controller and hydraulic line. This paper shows the simulation results to meet the target slip ratio on the various road conditions and displays the performance with Sliding Mode Controller has an improvement than a commercial ABS.

Development of ABS ECU for a Bus using Hardware In-the-Loop Simulation

  • Lee, K.C.;Jeon, J.W.;Nam, T.K.;Hwang, D.H.;Kim, Y.J.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1714-1719
    • /
    • 2003
  • Antilock Brake System (ABS) is indispensable safety equipment for vehicles today. In order to develop new ABS ECU suitable for pneumatic brake system of a bus, a Hardware In-the-Loop Simulation (HILS) System was developed. In this HILS, the pneumatic brake system of a bus and antilock brake component were used as hardware. For the computer simulation, the 14-Degree of Freedom (DOF) bus dynamic model was constructed using the Matlab/Simulink software package. This model was compiled and downloaded in the simulation board, where the Power PC processor was used for real-time simulation. Additional commercial package, the ControlDesk was used to monitor the dynamic simulation results and physical signal values. This paper will focus on the procedure and results of evaluating the ECU in the HILS simulation. Two representative cases, wet basalt road and $split-{\mu}$ road, were used to simulate real road conditions. At each simulated road, the vehicle was driven and stopped under the help of the developed ECU. In each simulation, the dynamical behavior of the vehicle was monitored. After enough tests in the laboratory using HILS, the parameter-tuned ECU was equipped in a real bus, which was driven and stopped in the real test field in Korea. And finally, the experiment results of ABS equipped vehicle's dynamic behavior both in HILS test and in test fields were compared.

  • PDF

Experimental Research on Braking Characteristics of Aircraft ABS Brake System with Ground Conditions (항공기용 ABS 제동시스템의 노면 조건별 제동특성에 관한 시험적 연구)

  • Yi, Mi-Seon
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.25 no.2
    • /
    • pp.18-24
    • /
    • 2017
  • Results of the experimental research are described in this thesis, which are about braking characteristics of aircraft ABS brake system with different ground conditions. Dynamo-tests were conducted with the state of the application aircraft condition and with two different ground conditions. The Braking characteristics on each ground condition were drawn from the results of occurrence of skid, braking distance and deceleration. The braking performance of the application aircraft could be anticipated and the efficient range of braking operation could be set with those results.

Development of Hardware-In-The-Loop Simulator for ABS (ABS를 위한 HIL시뮬레이터 개발)

  • 서명원;김석민;정재현;석창성;김영진;이선일;이재천
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.2
    • /
    • pp.155-167
    • /
    • 1998
  • The prevalence of microprocessor-based controllers in automotive systems has greatly increased the meed for tools which can be used to validate and test control systems over their full range of operation. The objective of this paper is to develop a real time simulator of an anti-lock braking system and the methodology of using hardware-in-the-loop simulation based on a personal computer. By use of this simulator, the analyses of a commercial electronic control unit as well as the validation of the developed control logics for ABS were performed successfully. The simulator of this research can be traction applied to development of more advanced control system, such as traction control systems, vehicle dynamic control system and so forth.

  • PDF