• Title/Summary/Keyword: ABS system

Search Result 300, Processing Time 0.024 seconds

Characterization of Chl a Fluorescence of Hydrophytes under Cadmium Stress (카드뮴 스트레스에 대한 수생식물 5종의 엽록소형광 반응)

  • Oh, Soon-Ja;Zhin, Kook-Lhim;Koh, Seok-Chan
    • Journal of Environmental Science International
    • /
    • v.18 no.12
    • /
    • pp.1361-1368
    • /
    • 2009
  • The effects of $Cd^{2+}$ ions on the Chl a fluorescence of 5 hydrophytes (e.g. Lemna, Salvinia, Ricciocarp, Nymph, Typha plants) were investigated in order to select $Cd^{2+}$-sensitive plant species and to get informations on physiological responses of plants to $Cd^{2+}$ stress. Lemna plants were most sensitive to cadmium stress, while Nymph plants were tolerant. However, in all $Cd^{2+}$-treated plants, Fv/Fm, the maximum photochemical efficiency of PS II, decreased in proportion to the increase of $Cd^{2+}$ concentration and treatment time. The Chl a fluorescence transient O-J-I-P was also considerably affected by $Cd^{2+}$ ions; the fluorescence yield decreased consid- erably in steps J, I and P in $Cd^{2+}$ treated plants, although it followed a typical polyphasic rise in non-treated plants. In Lemna plants, the functional parameters, ABS/CS, TRo/CS와 ETo/CS and RC/CS, decreased in proportion to the increase of $Cd^{2+}$ concentration, while N, Mo and Kn increased. The structural parameters, ${\Phi}po$, ${\Phi}po$/($1-{\Phi}po$), Plabs, SFlabs, Kp and RC/ABS, also decreased according to the increase of $Cd^{2+}$ concentration. Consequently, Lemna plants will be useful as a experimental model system to investigate responses of plants. And several functional or structural parameters could be applied to determine quantitatively the physiological states of plants under stresses.

Evaluation for Volatile Organic Compounds (VOCs) Emitted from Fused Deposition Modeling (FDM) 3D Printing Filaments (FDM 3D프린터 소재에서 방출될 수 있는 휘발성유기화합물 평가)

  • Kim, Sungho;Park, Hae Dong;Chung, Eunkyo
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.32 no.2
    • /
    • pp.153-162
    • /
    • 2022
  • Objectives: Fused deposition modeling (FDM) 3D printer which is one of the material extrusion (MEX) technologies is an additive manufacturing (AM) process. 3D printers have been distributed widely in Korea, particularly in school and office, even at home. Several studies have shown that nanoparticles and volatile organic compounds (VOCs) were emitted from an FDM 3D printing process. The objective of this study was to identify types of chemicals possibly emitted from FDM 3D printing materials such as PLA (polylactic acid), ABS (acrylonitrile butadiene styrene), nylon, PETG (polyethylene terephthalate glycol), PVA (polyvinyl alcohol), PC (polycarbonate) filaments. Methods: 19 FDM 3D printing filaments which have been distributed in Korea were selected and analyzed VOCs emitted of 3D printing materials by headspace gas chromatography mass spectrometry (headspace GC-MS). Subsamples were put into a vial and heated up to 200℃ (500 rpm) during 20 minutes before analyzing FDM 3D printing filaments. Results: In the case of PLA filament, lactide and methyl methacrylate, the monomer components of one, were detected, and the volume ratio ranged 27~93%, 0.5~37% respectively. In the case of ABS filaments, styrene (50.5~59.1%), the monomer components of one, was detected. Several VOCs among acetaldehyde, toluene, ethylbenzene, xylene, etc were detected from each FDM 3D printing filaments. Conclusions: Several VOCs, semi-VOCs were emitted from FDM 3D printing filaments in this study and previous studies. Users were possibly exposed to ones so that we strongly believe that we recommend to install the ventilation system such as a local exhaust ventilation (LEV) when they operate the FDM 3D printers in a workplace.

Assessment of Effluent Limitation for K Leather Industry Wastewater (K피혁폐수 처리시설에 대한 배출허용기준 평가)

  • Yang, Hyung-Jae;Kwon, Oh-Sang;Kim, Jae-Hoon;Lee, Sung-Jong;Jung, Dong-Il;Kim, Sang-Hoon
    • Journal of environmental and Sanitary engineering
    • /
    • v.22 no.2
    • /
    • pp.41-52
    • /
    • 2007
  • K leather industry wastewater treatment plant(advanced treatment process) was selected to evaluate effluent quality and pollutants removal efficiencies. $BOD_5$ concentration of effluent was $3.95mg/{\ell}$ and its removal efficiency was 99.8%. Also, most of other pollutants removal efficiencies were over 90% as well. And 95% reliability of effluent concentration were $106.8mg/{\ell}$ of CODmn, $86mg/{\ell}$ of SS, $72.04mg/{\ell}$ of TN that is greater than the effluent limitation, $0.98mg/{\ell}$ of ABS, $1.8mg/{\ell}$ of n-Hexane, $9.7mg/{\ell}$ of $BOD_5$ and $0.11mg/{\ell}$ of Cr.

A Study on Application Method of Brake System Modular Design for Medium and Large EV Architecture (중형 및 대형 EV 아키텍처를 위한 제동시스템 모듈러 설계 적용 방안에 관한 연구)

  • J. H. Shim;S. R. Hwang
    • Journal of Auto-vehicle Safety Association
    • /
    • v.16 no.1
    • /
    • pp.21-28
    • /
    • 2024
  • Many global car manufacturers in the world are recently developing a variety of electric vehicles in response to demanding market needs. Also, they have adapted the architecture method in order to develop electric vehicles effectively. It is because architecture method can produce various electric vehicles with high profitability. However, when electric vehicles are being developed, brake system has a lot of demanding tasks in relation to deciding specification of brake system because of heavy vehicle weight, narrow power electric room space and large volume of electric hydraulic booster. In this paper, a new approach is proposed for deciding the front and rear brake systems in order to design the brake system of electric vehicles effectively. To do this, we study correlations among vehicle weight, layout of power electric room and volume of electric hydraulic booster. And then, we also study combination of hydraulic braking and regenerative braking which is widely applied to electric vehicles. Finally, we want to contribute to build up modular design of brake system for architecture of electric vehicles through these studies.

A New Runner System Melt-Buffer for Filling Balance in Injection Mold (사출금형에서 균형충전을 위한 새로운 러너시스템 멜트버퍼)

  • Jeong, Y.D.;Jang, M.K.
    • Transactions of Materials Processing
    • /
    • v.18 no.2
    • /
    • pp.122-127
    • /
    • 2009
  • The injection mold with multi-cavity is essential for mass production of plastic products. Multi-cavity molds are designed to geometrically balanced runner system to uniformly fill to each cavity. However, despite geometrical balanced runner system, filling imbalances between cavity to cavity have always been observed in injection molding. To solve these problems, many studies such as Melt Flipper, RC Pin, and others have been presented. The results of these studies have been an effect on filling balances in multi-cavity molds. But, those have had a limitation that additional insert parts must have existed in the mold. In this study, a new runner system is suggested for filling balance between cavity to cavity using "Melt-Buffer" with simple change of runner shape. A series of simulation to confirm feasibility of Melt-Buffer's effects was conducted using injection molding CAE program. Also, a series of injection molding experiment was conducted using plastic materials such as ABS and PP. As results of this study, feasibilities of filling balances by Melt-Buffer were confirmed.

Enhancement of Sewage Treatment Efficiencies by Recirculation in Absorbent Biofilter System (재순환에 의한 흡수성 바이오필터 시스템의 오수처리효율 향상)

  • Kwun, Soon-Kuk;Cheon, Gi-Seol;Kim, Song-Bae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.47 no.3
    • /
    • pp.69-76
    • /
    • 2005
  • An Absorbent Biofilter System (ABS) combined with the recirculation process was investigated for the feasible application in additional removing of organics (BOD, SS) as well as nutrients (TN, TP) from small Community wastewater in Korea. Polyurethane biofilter media with high porosity and large surface area were /used for the aerobic system. A part of treated wastewater was recirculated into the anoxic septic tank to promote removal of nutrients. The concentrations of BOD and SS of treated wastewater satisfied the regulations for small on-site wastewater treatment facility (10 mg/L) during the overall experimental period. The effluent concentrations of BOD and SS were decreased with enhancement of removal efficiencies of 95.7 and $96.7\%$. The nitrogen and phosphorus removal efficiencies by the recirculation increased to $52.9\%\;and\;43.2\%$ in average during the overall experimental period, respectively. With the improvement, these values were increased as much as additional 42 and $18\%$ compared with those of non-recirculation. The rates of nitrification and denitrification were enhanced showing $65\~77\%\;and\;42\~92\%$, respectively. The described process modification is a low cost and effective method of enhancing nitrogen and phosphorus removal, especially on existing systems without changing major design components of a treatment facility.

Hull Maintenance Management System Development for Semi-Submersible Drilling Rig (반잠수식 시추선용 선체 유지보수 관리 시스템 개발)

  • Oh, Eun-Sung;Choi, Woo-Young;Kim, Hyeong-Cheol;Bae, Si-Hoon;Byeon, Ji-Ha
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.50 no.3
    • /
    • pp.129-137
    • /
    • 2013
  • Each owner or operator of offshore products uses a maintenance management system like CMMS(Computerized Maintenance Management System) in order to manage their assets effectively and efficiently for a long time. But most of maintenance management systems have been focused on machinery items, not on 'Hull' until now. On the other hand, classifications like ABS, DNV, GL are having a sale on hull inspection and maintenance system for ships and an interest in hull maintenance system is increasing because of the application of EDD(Extended Dry Docking). This paper discusses the concept, inspection process and the practical application of Hull maintenance for Semi-submersible drilling rig to extend the service life and run a stable operation.

Experimental investigation of two-phase natural circulation loop as passive containment cooling system

  • Lim, Sun Taek;Kim, Koung Moon;Kim, Haeseong;Jerng, Dong-Wook;Ahn, Ho Seon
    • Nuclear Engineering and Technology
    • /
    • v.53 no.12
    • /
    • pp.3918-3929
    • /
    • 2021
  • In this study, we experimentally investigate of a two-phase natural circulation loop that functions as a passive containment cooling system (PCCS). The experimental apparatus comprises two loops: a hot loop, for simulating containment under severe accidents, and a natural circulation loop, for simulating the PCCS. The experiment is conducted by controlling the pressure and inlet temperature of the hot loop in the range of 0.59-0.69 MPa (abs) and 119.6-158.8 ℃, respectively. The heat balance of the hot loop is established and compared with a natural circulation loop to assess the thermal reliability of the experimental apparatus, and an additional system is installed to measure the vapor mass flow rate. Furthermore, the thermal-hydraulic characteristics are considered in terms of a temperature, mass flow rate, heat transfer coefficient (HTC), etc. The flow rate of the natural circulation loop is induced primarily by flashing, and a distortion is observed in the local HTC because of the fully develop as well as subcooled boiling. As a result, we present the amount of heat capacity that the PCCS can passively remove according to the experimental conditions and compared the heat transfer performance using Chen's and Dittus-Boelter correlation.

Health Risk Assessments using GIS Method for the Abandoned Asbestos Mines (GIS 기법을 이용한 폐석면 광산의 위해성 평가)

  • Choi, Jin-Beom;Son, Ill;Noh, Jin-Hwan
    • Journal of the Mineralogical Society of Korea
    • /
    • v.24 no.1
    • /
    • pp.43-53
    • /
    • 2011
  • Health risk assessments for the abandoned asbestos mine were usually performed with activity-based sampling (ABS) method, which was not a effective tool for indexing health risk on an exact small area of mine. A newly proposed potential index of health risk (PIHR) was applied with proper spatial determination of geographical information system (GIS) to assess quantitatively health risks. A new trial was applied to a certain abandoned mine in Boryong as follows: A high grade area of PIHR was estimated 7.8% of the whole area of the mine (about 27.3 ha). Based on US EPA IRIS (integrated risk information system) model considering lifetime excess cancer risk (LECR), the health risk assessment indicated that the high grade area increased from 3.0 ha through 12.9 ha to 19.5 ha with an increase of asbestos contents in soil from 0.36% (1E-04 level) through 0.1% (3E-05 level) to 0.04% (1E-05 level). These results can be effectively applied to determine reclamation area of the abandoned asbestos mine.

A Study on the Coupled Torsional-Axial Vibration of Marine Propulsion Shafting System using the Energy Method

  • Jang, Min-Oh;Kim, Ue-Kan;Park, Yong-Nam;Lee, Young-Jin
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.3
    • /
    • pp.482-492
    • /
    • 2004
  • Recently. the market trend for marine diesel engine has involved the lower running speeds. larger stroke/bore ratio and higher combustion pressure. Consequently, because of the flexible engine shafting system due to the larger mass. inertia and the more elasticity, the complicated coupled torsional-axial vibrations have occurred in the operating speed range. Also, the vibrations act as an excitation on the hull-structural vibration. To predict the vibration behavior with more accuracy and reliability. many studies have proposed the several kinds of method to calculate the stiffness matrix of crankshaft. However, most of these methods have a weak point to spend much time on three dimensional modeling and meshing work for crankshaft. Therefore. in this work. the stiffness matrix for the crankthrow is calculated using the energy method (Influence Coefficient Method, ICM) with the each mass having 6 degree of freedom. Its effectiveness is verified through the comparison with the stiffness matrix obtained by using the finite element method (FEM) and measured results for actual ships propulsion system.