Browse > Article
http://dx.doi.org/10.5322/JES.2009.18.12.1361

Characterization of Chl a Fluorescence of Hydrophytes under Cadmium Stress  

Oh, Soon-Ja (Department of Biology & Research Institute for Basic Sciences, Jeju National University)
Zhin, Kook-Lhim (Department of Biology & Research Institute for Basic Sciences, Jeju National University)
Koh, Seok-Chan (Department of Biology & Research Institute for Basic Sciences, Jeju National University)
Publication Information
Journal of Environmental Science International / v.18, no.12, 2009 , pp. 1361-1368 More about this Journal
Abstract
The effects of $Cd^{2+}$ ions on the Chl a fluorescence of 5 hydrophytes (e.g. Lemna, Salvinia, Ricciocarp, Nymph, Typha plants) were investigated in order to select $Cd^{2+}$-sensitive plant species and to get informations on physiological responses of plants to $Cd^{2+}$ stress. Lemna plants were most sensitive to cadmium stress, while Nymph plants were tolerant. However, in all $Cd^{2+}$-treated plants, Fv/Fm, the maximum photochemical efficiency of PS II, decreased in proportion to the increase of $Cd^{2+}$ concentration and treatment time. The Chl a fluorescence transient O-J-I-P was also considerably affected by $Cd^{2+}$ ions; the fluorescence yield decreased consid- erably in steps J, I and P in $Cd^{2+}$ treated plants, although it followed a typical polyphasic rise in non-treated plants. In Lemna plants, the functional parameters, ABS/CS, TRo/CS와 ETo/CS and RC/CS, decreased in proportion to the increase of $Cd^{2+}$ concentration, while N, Mo and Kn increased. The structural parameters, ${\Phi}po$, ${\Phi}po$/($1-{\Phi}po$), Plabs, SFlabs, Kp and RC/ABS, also decreased according to the increase of $Cd^{2+}$ concentration. Consequently, Lemna plants will be useful as a experimental model system to investigate responses of plants. And several functional or structural parameters could be applied to determine quantitatively the physiological states of plants under stresses.
Keywords
Chl a fluorescence; Hydrophytes; Cadmium stress; Fv/Fm; Lemna plants;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Strasser R. J. and Govindjee, 1992, The Fo and the O-J-I-P fluorescence rise in higher plants and algae, In Argyroudi-Akoyunoglou J. H. (ed.), Regulation of Chloroplast Biogenesis, Plenum Press, New York, 423-426
2 Stirbet A., Govindjee, B. J. Strasser and R. J. Strasser, 1998, Chlorophyll a fluorescence induction in higher plants: Modelling and numerical simulation, J. Theor. Biol., 193, 131-151   DOI   ScienceOn
3 Guidi L., S. Mori, E. Degl´Innocenti and S. Pecchia, 2007, Effects of ozone exposure or fungal pathogen on white lupin leaves as determined by imaging of chlorophyll a fluorescence, Plant Physiol. Biochem., 45, 851-857   DOI   ScienceOn
4 Nriagu J. O. and J. M. Pacyna, 1988, Quantitative assessment of worldwide contamination of air, water and soils by trace metals, Nature, 333, 134-139   DOI   ScienceOn
5 Maleva M. G., G. F. Nekrasova and V. S. Bezel, 2004, The response of hydrophytes to environmental pollution with heavy Metals, Russian J. Ecol., 35(4), 230-235   DOI   ScienceOn
6 Benavides M. P., S. M. Gallego and M. L. Tomaro, 2005, Cadmium toxicity in plants, Braz. J. Plant Physiol., 17(1), 21-34   DOI
7 John R., P. Ahmad, K. Gadgil and S. Sharma, 2009, Heavy metal toxicity: Effect on plant growth, biochemical parameters and metal accumulation by Brassica juncea L., Int. J. Plant Production, 3(3), 65-76
8 Strasser B. J. and R. J. Strasser, 1995, Measuring fast fluorescence transients to address environmental questions: The JIP test. In Mathis P. (ed.), Photosynthesis: From Light to Biosphere, Kluwer Academic, Dordrecht, 977-980
9 Chollet R., 1993, Screening inhibitors (antimetabolites) of the biosynthesis or function of amino acids or vitamins with Lemna assay, In Boger P., Sandmann G. (ed.), Target assay of modern herbicides and related phytotoxicity compounds, Lewis, London, UK, 143-149
10 Nedbal L., J. Soukupova, J. Whitmarsh and M. Trtilek, 2000, Posthavest imaging of chlorophyll fluorescence from lemons can be used to predict fruit quality, Photosynthetica, 38(4), 571-579   DOI   ScienceOn
11 Srivastava A., B. Guisse, H. Greppin and R. J. Strasser, 1997, Regulation of antenna structure and electron transport in PSII of Pisum sativum under elevated temperature probed by the fast polyphasic chlorophyll a fluorescence transient: OKJIP, Biochem. Biophys. Acta., 1320, 95-106   DOI   ScienceOn
12 Nilsson H. E., 1995, Remote sensing and image analysis in plant pathology, Ann. Rev. Phytopathol., 33, 489-527   DOI   ScienceOn
13 Peuelas J. and I. Filella, 1998, Visible and near-infrared reflectance techniques for diagnosing plant physiological status, Trends Plant Sci., 3, 151-156   DOI   ScienceOn
14 Lichtenthaler H. K. and J. A. Mieh, 1997, Fluorescence imaging as a diagnostic tool for plant stress, Trends Plant Sci., 2, 316-320   DOI   ScienceOn
15 Prasad M. N. V., 1995, Cadmium toxity and tolerance in vascular plants, Environ. Exp. Bot., 35(4), 525-545   DOI   ScienceOn
16 Baryla A., P. Carrier, F. Franck, C. Coulomb, C. Sahut and M. Havaux, 2001, Leaf chlorosis in oilseed repe plants (Brassica napus) grown on cadmium polluted soil: causes and consequences for photosynthesis and growth. Planta, 212, 696-709   DOI   ScienceOn
17 Kahle H., 1993, Response of roots of trees to heavy metals, Environ. Exp. Bot., 33(1), 99-119   DOI   ScienceOn
18 Krause G. H. and E. Weiss, 1991, Chlorophyll fluorescence and photosynthesis: The basics, Annu. Rev. Plant Physiol. Plant Mol. Biol., 42, 313-349   DOI   ScienceOn
19 Bolhar-Nordenkampf H. R., S. P. Long, N. R. Baker, G. Oquist, U. Schreiber and E. G. Lechner, 1989, Chlorophyll fluorescence as a probe of the photosynthetic competence of leaves in the field: a review of current instrumentation, Functional Ecol., 3(4), 497-514   DOI   ScienceOn
20 Vogeli-Lange R. and G. J. Wagner, 1990, Subcellular localization of cadmium and cadmium-binding peptides in tobacco leaves, Plant Physiol., 92(4), 1086-1093   DOI   ScienceOn
21 Sandalio L. M., H. C. Dalurzo, M. Gomez, M. C. Romero-Puertas and L. A. del Rio, 2001, Cadmium induced changes in the growth and oxidative metabolism of pea plants, J. Exp. Bot., 52, 2115-2126
22 Baker N. R., 1991, A possible role for photosystem Ⅱ in environmental perturbations of photosynthesis, Physiol. Plant., 81, 563-570   DOI   ScienceOn
23 Lang M., H. K. Lichtenthaler, M. Sowinska, F. Heisel and J. A. Miehé, 1996, Fluorescence imaging of water and temperature stress in plant leaves, J. Plant Physiol., 148, 613-621   DOI   ScienceOn
24 Gilmore A. M. and Govindjee, 1999, How higher plants respond to excess light: Energy dissipation in photosystem II, In: Singhal G. S., Renger G., Irrgang K. D., Govindjee (ed.), Concepts in photobiology: Photosynthesis and Photo-morphogenesis, New Delhi, India, 513-548
25 Osmond C. B., D. Kramer and U. Luttge, 1999, Reversible, water stress induced non-uniform chlorophyll fluorescence quenching in wilting leaves of Potentilla reptans may not be due to patchy stomatal responses, Plant Biol., 1, 618-624   DOI   ScienceOn
26 오순자, 고석찬, 2004, 겨울철 자연환경에 노출된 문주란 잎의 엽록소형광과 항산화효소 활성에 관한 연구, 한국환경생물학회지, 22(1), 233-241   과학기술학회마을