• Title/Summary/Keyword: ABAQUS explicit

Search Result 110, Processing Time 0.018 seconds

A Study on the Free Drop Impact Characteristics of Spent Nuclear Fuel Shipping Casks by LS-DYNA3D and ABAQUS/Explicit Code (LS-DYNA3D 및 ABAQUS/Explicit Code를 이용한 사용후 핵연료 운반용기의 자유낙하 충격특성연구)

  • Choi, Young-Jin;Kim, Seung-Joong;Kim, Yong-Jae;Lee, Jae-Hyung;Lee, Young-Shin
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.18 no.1
    • /
    • pp.43-49
    • /
    • 2005
  • The package used to transport radioactive materials, which is called by the shipping cask, must be safe under normal and hypothetical accident conditions. These requirements for the cask design must be verified through test or finite element analysis. Since the cost for FE analysis is less than the one for test, the verification by FE analysis is mainly used. But due to the complexity of mechanical behaviors, the results depend on how users apply the codes and can cause severe errors during analysis. In this paper, finite element analysis is carried out for the 9 meters free drop condition of the hypothetical accident conditions using LS-DYNA3D and ABAQUS/Explicit. We have investigated the analyzing technique lot the free drop impact test of the cask and investigated several vulnerable cases. The analyzed results were compared with each other. We have suggested a reliable and relatively simple analysis technique for the drop test of spent nuclear fuel casks.

Analysis of Debonding between Mixed Finite Elements for Saturated Porous Media (혼합유한요소를 통한 다공질매체의 요소분리해석)

  • Tak, Moonho;Lee, Janggeun;Ban, Hoki;Kang, Jaemo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.2
    • /
    • pp.53-58
    • /
    • 2017
  • In this paper, we propose a new method to debond between mixed finite elements for porous media in ABAQUS (2014). ABAQUS just provides debonding algorithm for the u-p model using cohesive elements in standard version. However, this approach has a drawback that it is hard to simulate complex debonding problems like element separation, rigid body motion, and contact between separated elements in standard version. ABAQUS-explicit can resolve these complex problems, but cohesive elements for the u-p model cannot be applied. We introduce a new algorithm for debonding for porous media instead of using cohesive elements. In this method, subroutines VUMAT to apply constitutive models and VDISP to separate elements in ABAQUS are used to simulate debonding problems. In addition, a simple 2-D example is demonstrated in the ABAQUS-explicit solver.

Dynamic buckling analysis of a composite stiffened cylindrical shell

  • Patel, S.N.;Bisagni, C.;Datta, P.K.
    • Structural Engineering and Mechanics
    • /
    • v.37 no.5
    • /
    • pp.509-527
    • /
    • 2011
  • The paper investigates the dynamic buckling behaviour of a laminated composite stiffened cylindrical shell using the commercial finite element code ABAQUS. The numerical model of the composite shell is validated by static tests. In particular, the experimental collapse test is numerically simulated by a quasi static analysis carried out by both ABAQUS/Standard and ABAQUS/Explicit. The behaviour in the post-buckling field and the collapse load obtained by the analyses are close to the experimental data. The validated model is then used to study the dynamic buckling behaviour with ABAQUS/Explicit. The effects of the loading magnitude and of the loading duration are investigated, implementing in the analysis also first-ply failure criteria. It is observed that the dynamic buckling load is highly affected by the loading duration.

Analysis of crack growth by modified Gurson model (수정 Gurson 모델을 이용한 균열성장 해석)

  • Yang Seung-Yong;Goo Byeong-choon;Kim Jae-Hoon
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.702-709
    • /
    • 2004
  • Modified Gurson model (Gurson-Tvergaard-Needleman model) was used to analyze crack growth in M(T) and C(T) specimens. A commercial finite element code ABAQUS/Explicit is used to account for total failure of material point by cavity coalescence, and crack growth was simulated by finite element extinction. Crack growth resistance curve was obtained by calculating J-integral. Crack growth under residual stress was investigated.

  • PDF

High-velocity impact of large caliber tungsten projectiles on ordinary Portland and calcium aluminate cement based HPSFRC and SIFCON slabs -Part II: numerical simulation and validation

  • Gulkan, P.;Korucu, H.
    • Structural Engineering and Mechanics
    • /
    • v.40 no.5
    • /
    • pp.617-636
    • /
    • 2011
  • We present the numerical implementation, simulation, and validation of the high-velocity impact experiments that have been described in the companion article. In this part, numerical investigations and simulations performed to mimic the tests are presented. The experiments were analyzed by the explicit integration-based software ABAQUS for improved simulations. Targets were modeled with a damaged plasticity model for concrete. Computational results of residual velocity and crater dimensions yielded acceptable results.

Conversion of ABAQUS user Material Subroutines

  • Yang, Seung-Yong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.6
    • /
    • pp.635-640
    • /
    • 2010
  • When using finite element pogram ABAQUS to compute material characteristics, one builds a user material subroutine if unique constitutive feature needs to be included. In ABAQUS/Standard, UMAT subroutine should be built, and in ABAQUS/Explicit, VUMAT should be used. Although two subroutines carry out the same type of task, two different programs should be made depending on the working environment, and it is not easy to program the subroutines following the manual without enough understanding of solid mechanics. In this paper, difference between UMAT and VUMAT subroutines is epitomized, and a conversion scheme from UMAT to VUMAT is discussed. An example shows that the two programs give the same stress computation result.

Analysis of stamping for the Lower control arm using Explicit code (Explicit code를 이용한 Lower control arm의 스탬핑 해석)

  • 하원필;임세영
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.4
    • /
    • pp.50-58
    • /
    • 1994
  • To examine the residual stress field resulting from stamping process for the lower control arm of a car, the explicit finite element analysis is performed for the stamping process by way of the ABAQUS Explicit. The residual stress is obtained in terms of the Von Mises stress and other parameters such as equivalent plastic strain, the change of blank thickness, the final configuration of the blank and the spring back effect are also considered. Moreover, discussed is the convergence of the explicit FEM versus the punch sped and the element discretization

  • PDF

An Analysis of Cone Penetration Based on Arbitrary Larangian-Eulerian Method (Arbitrary Lagrangian-Eulerian 기법에 의거한 콘 관입 해석)

  • Oh, Se-Boong
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.6
    • /
    • pp.85-98
    • /
    • 2001
  • Cone penetration was analyzed by arbitrary Lagangian-Eulerian(ALE) method. In order to simulate full penetration, steady state analyses were performed using ABAQUS/Explicit, which models upward flow of soil layers. In the analysis of homogeneous layer it was found that the paths and the strain of soil particles were consistent with the result of the strain path method and that the ultimate resistance were reasonably evaluated. The cone penetration through different soil layers was also analyzed and that showed the transfer of cone resistance. The steady state ALE analysis could perform full penetration through the layered soils.

  • PDF

Finite Element Analysis of Harmonics Generation by Cracks (균열의 고조파 발생에 대한 유한요소해석)

  • Yang, Seung-Yong;Kim, Noh-Yu
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.6
    • /
    • pp.573-577
    • /
    • 2009
  • When ultrasound propagates to a crack, transmitted and reflected waves are generated. These waves have useful information for the detection of the crack lying in a structure. In this paper, using finite element analysis, displacements round a inclined crack were obtained for 4 different inclination angles. Fourier transformation is applied to the results to research the frequency characteristics depending on the various locations around the crack. 2-dimensional plane stress model is considered, and finite element software ABAQUS/Explicit is used.

Finite element model for interlayer behavior of double skin steel-concrete-steel sandwich structure with corrugated-strip shear connectors

  • Yousefi, Mehdi;Ghalehnovi, Mansour
    • Steel and Composite Structures
    • /
    • v.27 no.1
    • /
    • pp.123-133
    • /
    • 2018
  • Steel-concrete-steel (SCS) sandwich composite structure with corrugated-strip connectors (CSC) has the potential to be used in buildings and offshore structures. In this structure, CSCs are used to bond steel face plates and concrete. To overcome executive problems, in the proposed system by the authors, shear connectors are one end welded as double skin composites. Hence, this system double skin with corrugated-strip connectors (DSCS) is named. In this paper, finite element model (FEM) of push-out test was presented for the basic component of DSCS. ABAQUS/Explicit solver in ABAQUS was used due to the geometrical complexity of the model, especially in the interaction of the shear connectors with concrete. In order that the explicit analysis has a quasi-static behavior with a proper approximation, the kinetic energy (ALLKE) did not exceed 5% to 10% of the internal energy (ALLIE) using mass-scaling. The FE analysis (FEA) was validated against those from the push-out tests in the previous work of the authors published in this journal. By comparing load-slip curves and failure modes, FEMs with suitable analysis speed were consistent with test results.