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An Analysis of Cone Penetration Based on Arbitrary
Larangian-Eulerian Method
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Abstract

Cone penetration was analyzed by arbitrary Lagrangian-Eulerian(ALE) method. In order to simulate full penetration,
steady state analyses were performed using ABAQUS/Explicit, which models upward flow of soil layers. In the analysis
of homogeneous layer it was found that the paths and the strain of soil particles were consistent with the result of
the strain path method and that the ultimate resistance were reasonably evaluated. The cone penetration through different
soil layers was also analyzed and that showed the transfer of cone resistance. The steady state ALE analysis could

perform full penetration through the layered soils.
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1. Introduction

In the nonlinear simulation of penetration, the soil
material undergoes very large deformation. This defor-
mation distorts the FE mesh to the point where the mesh
is unable to provide accurate results or the analysis
terminates for numerical reasons. For such a problem
ABAQUS/Explicit version 5.8 provides an adaptive
meshing technique which is based on Arbitrary Lagrangian-
Eulerian (ALE) Method (HKS, 1998).

We have three sets of coordinates: spatial or Eulerian
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coordinates X, material or Lagrangian coordinates X and
referential coordinates ¢£. In a computational procedure,
the referential coordinates can be used to define the
nodes and elements of the mesh.

In the mesh description called Lagrangian, each node
remains coincident with the same material particle and
each eclement contains the same material domain
throughout the deformation such that £ = X. Since
nodes move exactly with material points in the largely
deformed problem, the mesh will become distorted with

high strain gradients. In the Eulerian mesh description,
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the referential coordinate system is chosen to coincide
with the spatial coordinates such that £ = x and nodes
stay fixed while material flows through the mesh. It is
difficult to track free surface and motion of boundaries.
In a Lagrangian and Euerian mesh, there is no need to
introduce referential coordinate system, since the variables
already play the role of referential coordinates.

Arbitrary Lagrangian-Eulerian (ALE) description can
solve the disadvantages of both Lagrangian and Eulerian
meshes for large deformation problems (Belytschko,
1983). A smoother mesh is generated at regular intervals
to reduce element distortion and the referential coordinate
is chosen so that the distortion of the mesh is distributed
and reduced. Nodes on the free surface or the boundary
are treated as Lagrangian. Hence, the mesh motion is
somewhat independent of the material motion like the
Eulerian mesh while the boundary nodes keep coincident
with the material points like the Lagrangian mesh (HKS,
1998).

Recently van den Berg's (1996) solved the cone
penetration on the basis of Eulerian formulation with
upward flow of soil layers. Kim (2000) and Song (2001)
reported the large penetration analysis of piezo-cone on
the basis of updated Lagrangian formulation. Their
researches include the advanced constitutive models,
Bounding surface model and Cam-clay model, with
coupled formulation of pore pressure and displacement.
This study is on the same track as those but the solving
methodology is different.

In this study ALE analyses of the cone penetration are
performed through layered soil using ABAQUS. The
main focus is the verification of feasibility on the ALE

method for soil penetration.

2. Penetration analysis using ABAQUS/Explicit

In the conservation laws, the material time derivative
of a function f is required. For example, f can be mass,
linear momentum and angular momentum and is usually
defined as a function of x and time ¢ In an ALE
formulation & is prescribed or fixed, the conservation

laws and their quantities are expressed in terms of £ and
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t. The time derivative with the material coordinate(X)

fixed is derived as follows;

f(X t)——aﬁﬁ’—tl-f—(vl— a M (1)

where »; and o, are the velocity of material and mesh.

f(& 9, , denotes the time derivative with the referential
coordinate( £) and (v;— ,)f, ¢, represents the convection
term due to the relative motion between the material and
the mesh. In particular v=0, i.c., &= x, the familiar
material time derivative is obtained. On the basis of
equation. (1) ALE formulations on the finite element
methodclogy are derived. Refer Liu et al. (1988) in
details.

There are two categories of the ALE analysis for large
penetration; i.e., transient analysis and steady-state
analysis. As shown in Fig. 1 (a), the transient analysis
models downward penetration of the cone penetrometer.
On the Lagrangian boundaries, the mesh follows the
material and the mesh for soil layers is remapped by
adaptive meshing which reduce the distortion of the mesh
more than that by the pure Lagrangian analysis with the
formulation of large deformation. |

The steady-state penetration is analyzed by upward
flow of soils into or out of the mesh from bottom to top.
The Eulerian boundaries in Fig. 1 (b) are fixed in the
spatial coordinate while slightly adaptive meshes are
remapped with those boundaries.

As an example cone penetration into homogeneous
layer of soft clay was analyzed on the basis of arbitrary
Lagrangian-Eulerian (ALE) method. The transient analysis
and the steady state analysis were performed respectively
by the downward displacement of the cone and the
upward flow of soil layer until very large penetration of
around 5 times cone diameter. For the solution accuracy
smooth load-time function was utilized. The mesh has 4-
noded elements with reduced integration and the number
of elements is 9,060. The cone was modeled by rigid
body in which the radius R=17.9mm, tip length=30.0mm
and tip angle=60°. There are contact surfaces between

soil and the cone which simulate the interactions such
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Fig. 1. Axisymmetric model in the analysis of cone penetration
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Fig. 2. Undeformed and deformed meshes in transient analysis
as slip or friction between surface pairs in ABAQUS. in the contact surfaces (no friction or adhesion) and the

An elastic-perfectly plastic model with Mises criteria layer did not have initial stresses.

modeled the soil and the parameters were similar to van Fig. 2 (a) shows the undeformed configuration, which

den Berg's (1996); i.e., Young's Modulus E=3000kPa, is almost the same as the deformed configuration after

Poisson's ratio 1=0.49 and the undrained strength C,~= the steady state analysis. As a result of the transient

20kPa. Soil-cone interaction was considered to model slip analysis the deformed configuration after the penetration
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Fig. 3. Resistance-displacement relationships

of 1.8 times the cone diameter is shown in Fig. 2 (b).
The mesh around cone tip is severely distorted and the
following penetration made it impossible to get the
numerical solution even in the ALE analysis.

The cone resistance with respéct to penetration is
shown in Fig. 3. The result of TA(transient analysis)
shows that the oscillation of numerical solution occurs
from around 10mm penetration and that after the penetra-
tion of tip length(30mm) the resultant resistance cannot
reach the ultimate value because of severe mesh distortion,
However, the SSA(steady state analysis) provides the full
relationship of the cone resistance and the penetration
depth, while the solution also oscillates slightly. As a
result it is found that SSA is better than TA for the
evaluation of ultimate resistance in the large penetration

analysis.

Fig. 3 (b) shows SSA results with different rates of
upward soil flow, 20mm/s and 2mm/sec. The ultimate
resistances are almost independent of the rate, while
slower rates make less oscillation of the numerical
solution. This rate effect did not result from material
properties but from numerical accuracy in ABAQUS/
Explicit. As a result it was found that numerical solutions

are reliable in the engineering point of view.

3. Example 1; Penetration in Homogeneous
Clays

The soil was modeled using an elastic-perfectly plastic
model with Mises criteria and the parameters are described
in Table 1. In these examples Poisson's ratio =0.49 for

incompressibility and the undrained strength C,=20kPa.
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Table 1. Material parameters in example 1

run E (kPa) | C, (kPa) | a (kPa) E/C,
clay._1 3000 20 0 150
clay 2 6000 20 0 300
clay_3 12000 20 0 600
clay_4 30000 20 0 1500
clay_5 6000 20 10 300
clay_6 6000 20 20 300

Soil-cone interaction was considered in clay 5 and
clay 6, in which the adhesion @ models the perfectly
plastic constitutive relationship in contact surfaces. The

layer did not have initial stresses.

The mesh is the same as in Fig. 1 (b). The penetration
of cone was analyzed on the basis of arbitrary Lagrangian-
Eulerian (ALE) method and the steady state analysis was
performed by the upward flow of soil layer (20mm/sec)
until very large penetration (30 sec).

For the solution accuracy smooth load-time function
was utilized as shown in Fig. 4. As a result of the steady
state analysis soil flows through the mesh. The outflow
velocity from the top surface is almost the same as the
inflow because the soil is incompressible.

Fig. 5 shows the deformed mesh after full penetration
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Fig. 6. The flow of particles around cone

(30 sec.), in which the mesh was deformed little even
in the steady state analysis. We have tracer particles in
order to track node or element variables at flowing
material points and to view time history information. Fig.
6 shows (tracer) particle displacement or soil flow around
cone for the example clay 1. Initial particles were located
at 40mm below the cone tip and after 3.5~4.0 seconds
the particle arrive at the cone tip. After 5.3 ~5.6 seconds
the particles flow through the surface of the cone tip in
Fig. 6.

Let » define initial position of a particle from the
center line and R define cone radius. The strain measures
of particles are defined in the cylidrical coordinate

system as

Ei=e,, E2=T13(6n_500), E3=72=3r672 (2)

E2

where e,,, €4 and ¢,, are normal strain components in
the r 6z coordinate and ¢,, is a shear strain component
in the 7z plane. Each strain components are of true
(logarithmic) strain measure. The three deviatoric strain
components are convenient to descibe the shearing modes
in axisymmetric problems, in which the strain measure
is based on logarithmic strain. Conventional triaxial tests
impose E; type of strain and E,= E;=(), pressuremeter
tests apply E, and simple shear tests impose E; modes
(Baligh 1985).

For the points close to the cone, the deviatoric strain
paths in Fig. 7 were obtained by tracer particles which
indicate that (1) the strain levels are much greater than
those normally imposed in common laboratory and
pressuremeter tests and that (2) in reaching the final state
of strain behind the tip the strain components show
significant reversals. These responses are similar trend to
‘Strain Path Method’ (Baligh 1985) while the closer
region to the centerline has less accurate solution at
integration points because of mesh refinement.

The reactions of the cone are shown in Fig. 8 (a) and
(b) with respect to time and relative displacement of the
cone. The solution has some numerical oscillations since
ABAQUS/Explicit performs explicit time integration,
which can be reduced by finer mesh refinement. Note
that the soil layer is homogeneous and interface between
soil and cone has no adhesion in these examples. The
ultimate resistance occurs after around 200mm penetration
or 5 times the cone diameter and increases with E/C,
ratio where E is Young's modulus.

The examples, clay 5 and clay_6 included soil-cone
adhesion in homogeneous clay and the reaction is

compared in Fig. 9 (a) and (b). Even after the penetration

E2

0.7

Fig. 7. Strain history of soil particles
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The reaction with adhesion is much larger than those of
the slip case. The result is summarized in Table 2.

We can define the cone factor as

dc.— Oy

N.=
c Cy

3

In the above equation g is the axial resistance per unit

Table 2. Summary of results in example 1

G/Cu

Fig. 10. A comparison for the results of ALE analyses

area at tip, which is provided by the ALE analysis without

adhesion. g, is the initial vertical stress, which is ignored

(or assumed as zero) in these analyses. The cone factor

run E (kPa) C, (kPa) a (kPa) ultimate capacity (kPa)
clay_1 3000 20 0 170
clay 2 6000 20 0 200
clay_3 12000 20 0 230
clay_4 30000 20 0 270
clay_5 6000 20 10 more than 840
clay_6 6000 20 20 more than 1190
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with respect to G/C, is shown in Fig. 10 and the result

of ALE analyses agrees well with the Baligh's suggestion
(1985) that N,=2(1+ In(G/c,))—0.49.

Fig. 11 shows the contour of plastic strain invariant

= f %de”l :de” in which we can imagine the zone
of zero-plasticity. In the case of clay I to clay 4 contours
of plastic strain for homogenous clays are very similar
each other and seem to be independent of soil properties.
These are similar to results from strain path method such
as the strain path during cone penetration is somewhat
independent of soil properties (Baligh 1985). The cases
of clay 5 and clay 6 (with adhesion) have similar trend
but higher strain (distortion) at interface, which results
from the different mechanism between cone and soil

interfaces.

4. Example 2: Penetration through layered
clays

In ABAQUS/Explicit, the boundary between two
different materials can never flow through the mesh.
Hence, steady state penetration through layered system
was performed using the user material subroutine,
VUMAT.

The author had to code all constitutive routines in a.

VUMAT, which makes multi-layers a single material
layer in running ABAQUS. However each layer has
different parameters or constitutive relationships in a
VUMAT. In the analysis of soil flow, the boundary of

“material or the initial position of materials have to be

obtained since the material flows through the mesh. Note
that VUMAT can recognize field variables, i.e., material
point coordinate and time step. VUMAT makes the mesh
region divided by the initial material coordinate, saves as
a state variable at the initial stage and with that state
variable, selects an appropriate constitutive relationship
in the procedure of analysis.

The procedure to describe a VUMAT is as follows:
(1) save initial material coordinate on depth as a state
variable, (2) select the corresponding layer and parameters
and (3) run Mises elasto-plasticity routine which was
provided in ABAQUS example code. See Table 3. Actual
soil behavior can be modeled with more complex consti-
tutive models than Mises model but advanced constitutive
modeling is beyond the scope of this study.

The mesh and numerical model are the same as
example 1 in section 3 while soil properties are shown
for a series of examples 50~53 in Table 3. The cases
of example 52 and 53 have a homogeneous layer of

relatively soft and stiff properties. Example 50 has soft
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Table 3. Algorithm of VUMAT for the analysis of layered system

Read parameters for each layer

Save the set of parameters of the first layer to Parameter Sef 1
Save the set of parameters of the second layer to Parameler Set 2
Save the initial vertical coordinate of boundary of two layers to h_ref

If time step equal initial step, then

Read the initial vertical coordinate of material point from field data

Save it to state variable on depth
else

Read the initial vertical coordinate of material point from state variable on depth

endif

If state variable on depth is greater than h_ref, then
Select Parameter Set 1

Else
Select Parameter Set 2

Endif

Run the routine for Misses model

Table 4. Material parameters in example 2

run E (kPa) C, (kPa) description
50 2000/5000 10/20 soft/stiff
51 5000/2000 20/10 stiff/soft
52 2000 10 stiff layer
53 5000 20 stiff layer

clay in the upper layer and stiff clay in the lower layer
where the boundary is located at 100mm below the tip.
In the example 51 the stiff layeris in the upper side and
soft layer in the lower side with the same location of
boundary as the example 50. Poisson's ratio »=0.49 and
initial stresses and soil-cone interaction are ignored.
As a result of arbitrary Lagrangian Eulerian (ALE)
method the reaction per unit area is shown in Fig. 12.
The example 52 and 53 shows the reference of cone

reaction in soft and stiff homogeneous layers. In example
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Fig. 12. Reactions at cone in the layered soils
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50, the cone has penetrated iniﬁally the soft layer and
the cone reaction follows the stiff homogeneous layer's.
Before cone tip arrive the boundary of two layers
(100mm below the initial location of the cone tip) the
reaction begins to transfer to stiff layer's and arrives at
the ultimate resistance of stiff layer's after around 200mm
penetration. Example 51 shows the result to be contrary
to the example 50.

In these analyses, the boundary of layers flows through
the mesh with materials. In the user material subroutine
the initial material point was defined as a state variable
in each material point and it is possible to distinguish the
layer boundary with the contour of initial depths. Fig. 13
(a) shows the contour of a state variable on the initial
depth of material in which the boundary of materials is
at 100mm below the cone tip. After penetration the
boundary flows upward near the top of the mesh.

Fig. 14 shows the contour of ¢ which is defined as

(I:[%‘{ (on— o)+ (o= 039)* + (03— 01))?)

+3{c%+ okt agl}]uz @

In the above equation, ¢; (©=1,2,3 and j=1,2,3) is the
componznt of the Cauchy stress tensor in the Cartesian
coordinate.

Fig. 14 (a) has softer clay in the upper layer than the

lower and shows the boundary of stress distribution and
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the lower stiff layer has higher stress concentration near
the cone tip. After full penetration the stress distribution
is dependent on the strength of the lower clay and most
adjacent area near the cone is yielding as shown in Fig.
14 (b). The contrary response is shown in Fig. 15 in

which the lower layer is softer than the upper.

5. Conclusion

The Arbitrary Lagrangian-Eulerian analysis was performed
for the cone penetration through soils using ABAQUS/
Explicit. The steady state analysis could penetrate to the
sufficient depth for simulating full penetration. As a
result of the penetration in the homogeneous layer, the
paths of soil particles and strain were evaluated which
are consistent with the result of strain path method. The
ultimate resistance agreed also with the Baiigh's solution.

The cone penetration through different soil layers was
successfully analyzed with user-defined subroutine, VUMAT
in ABAQUS/Explicit. Therefore it is found that the steady
state analysis is feasible in penetration analysis through
the layered system and that the rigorous analysis of
practical penetration problems is readily available with
ABAQUS code.
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