• Title/Summary/Keyword: AAS(Atomic absorption spectrophotometry)

Search Result 17, Processing Time 0.023 seconds

Accuracy and Precision of Microwave Oven Digestion/Atomic Absorption Spectrophotometry for Analyzing Airborne Chromium Collected on MCE Filter in Plating Operation (도금공정 크롬시료 분석을 위한 Microwave Oven Digestion/Atomic Absorption Spectrophotometry 방법의 정확도 및 정밀도 평가)

  • Lee, Byung-Kyu;Lee, Ji-Tae;Shin, Yong-Chul
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.11 no.1
    • /
    • pp.48-55
    • /
    • 2001
  • The purpose of this study was to evaluate the analytical accuracy and precision of microwave oven digestion/atomi absorption spectrophotometry (AAS) for analyzing airborne chromium collected on mixed cellulose ester membrane (M filter from the work environment, and to compare the accuracy and the precision with those of the National Institute for Occupational Safety and Health (NIOSH) Method #7024 hot plate digestion/AAS method. For this study, field air sample pairs were collected from a electroplating process, and spiked samples in a laboratory were prepared and using these samples. Two digestion methods were comp; and evaluated in terms of recovery rate and bias as indices of accuracy and coefficient of variation as a index of precision. The results and conclusions are as follows. In spiked samples, the accuracies (% mean recoveries) of hot plate/AAS and microwave oven/AAS method were 97.19%, 97.1%, respectively, and the precisions (pooled respectively, and the precisions (pooled coefficient of variance, $CV_{pooled}$) 6.93% and 3.88%, respectively. The biases of hot plate ani microwave oven methods were 4.56 - 14.7% and 2.22 - 7.42% respectively. There was no statistically significant difference between hot plate and microwave oven methods recovery rates of spiked samples (p>0,05). Also, no statistically significant difference was shown among the concentrations of air samples determined by two method (p>0.05). In conclusion, microwave oven/AAS method h excellent accuracy and precision, and advantages such as time-saving and simple procedure in comparison with the classical NIOSH method. Therefore, this method can be use widely to analyze airborne chromium collected on MCE filter from the work environments.

  • PDF

Determination Of Dissolved Trace Metals In Sea Water By Atomic Absorption Spectrophotometry After Concentration By Fe (III) - APDC Coprecipitation

  • Lee, Dong-Soo;Lee, Soo-Hyung;Kwak, Hi-Sang;Lee, Kwang Woo
    • 한국해양학회지
    • /
    • v.15 no.1
    • /
    • pp.66-70
    • /
    • 1980
  • A method for the determination of dissolved species of Cd, Co, Cu, Ni, Pb and Zn in sea water by flame atomic absorption spectrophotometry (AAS) is described. Prior to analysis by AAS, these elements are concentrated by coprecipitation with iron pyrrolidinedithiocarbamate at pH 3 because of matrix effects and their low concentration levels in sea water. The detection limits are 0.01, 0.04, 0.02, 0.05, 0.08, and 0.03$\mu\textrm{g}$/l, and the relative standard deviations are 1.0, 2.4, 1.3, 2.9, 2.0 and 2.9% for Cd, Co, Cu, Ni, Pb and Zn, respectively. The method is shown to be satisfactory in terms of recovery and precision for the determination of these metals in sea water.

  • PDF

Determination of Lead in Urine by Atomic Absorption Spectrophotometry (원자흡광법을 이용한 요중 연 배설량의 정량)

  • Paik, Nam-Won;Yoon, Bock-Sang;Chung, Kyou-Chull
    • Journal of Preventive Medicine and Public Health
    • /
    • v.7 no.2
    • /
    • pp.377-381
    • /
    • 1974
  • Determination of lead in urine is important in industrial hygiene and toxicology. Dithizone method has been principally used for the determination of lead in urine, which gives accurate results in skilful hands but is usually complex and time-consuming. Atomic absorption spectrophotometry is a new simple method and several procedures have been described. However, the influences of pH and the presence of chelating agents during treatment of lead poisoning are not clear. The purpose of this study was to find out the effect of pH and chelating agents on the determination of lead using Shimadzu atomic absorption/flame spectrophotometer, model AA-610. The results obtained were as follows: 1. The atomic absorption spectrophotometry(AAS) could be applied without prior acid digestion to specimens in the absence of chelating agents. The absorbance at $2,170\;{\AA}$, though more sensitive, was more noisy electronically. Therefore, we selected the wavelength of $2,833\;{\AA}$ plus scale expansion. 2. The optimal pH was in the range from 2 to 3. 3. The sensitivity was $0.075{\mu}g/ml/%$ and detection limit was about $0.2{\mu}g/ml$. 4. In the presence of EDTA, lead could not be completely determined without prior acid digestion. 5. On specimens from patients receiving penicillamine therapy, a comparison was made between the values obtained with dithizone method and AAS method with prior acid digestion. The results of comparison showed a very good agreement.

  • PDF

Comparison Study of AAS and ISE Method in the Lithium Analysis of Serum and Urine (혈액 및 소변의 Lithium치 측정에 있어서 AAS법과 ISE법의 비교)

  • Lee, Soo-In;Lee, Chae-Hoon;Kim, Kyung-Dong;Kim, Chung-Sook
    • Journal of Yeungnam Medical Science
    • /
    • v.10 no.2
    • /
    • pp.409-416
    • /
    • 1993
  • In the method for lithium (Li) analysis, flame emission photometry and atomic absorption spectrophotometry (AAS) have been used most frequently. In addition, lithium can be analyzed by ion-selective electrode (ISE) or fluorscence polarization immunoassay. We evaluated the comparison between AAS method based on the principle of absorption of light at 670.8 nm by Li and ISE method based on the principle of voltage difference generated by Li in contact with lithium ionophore. We compared with those obtained by AAS (AA/AE Spectrophotometer 551, Instrumentation Laboratory Co.) and ISE(CSYNCHRON EL-ISE, Beckman Co.) in the serum and urine of 6 patients and evaluated time-related changes of serum lithium concentration after dosing in both methods. The results are summarized as follows : 1. In within-run precision study for lithium concentration, coefficient variations (CVs, %) ranged from 1.34 to 2.17 for AAS and from 0.34 to 0.85 for ISE method. In between-run precision study for lithium concentration, CVs ranged from 1.23 to 1.72 for AAS and from 0.61 to 1.38 for ISE method. 2. The correlation study between AAS and ISE method resulted in Y=0.946X+0.137 (N=32, r=0.933, X=AAS, Y=ISE) for serum lithium and Y=1.092X+0.977 (N=28, r=0.943, X=AAS, Y=ISE) for urine lithium. 3. Time-related changes of serum lithium concentration in both AAS and ISE method resulted in peak serum levels about 2 hours after dosing and then rapidly decreased after the peak serum level and finally arrived at nearly initial levels about 9 hours after dosing. 4. The reference range of serum lithium was found as undetectable level for both AAS and ISE method and the reference range of urine lithium to the urine creatinine was 0-0.00014 mmol/mg(mean 0.00002 mmol/mg) for AAS method.

  • PDF

Determination of Selenium in Dried Yeast Preparations (셀레늄 함유 건조효모제제 중 셀레늄 분석방법에 관한 연구)

  • Oh, Sea-Jong;Oh, Young-Taek;Yoon, Won-Yong;Park, Sung-Bae
    • Journal of Pharmaceutical Investigation
    • /
    • v.24 no.1
    • /
    • pp.29-32
    • /
    • 1994
  • In order to improve the sensitivity of the current assay methods of selenium in dried-yeast preparations, atomic absorption spectrophotometry (AAS), high performance liquid chromatography (HPLC) and UV-Vis spectrophotometry were employed. The sample was prepared with the digestion by acid mixture of hydrochloric acid, nitric acid and perchloric acid after elimination of ether-soluble substances. The range of quantitation of selenium was $1.0{\sim}6.0\;{\mu}g/ml$ by UV-Vis spectrophotometry, $5.0{\sim}20.0\;{\mu}g/ml$ by HPLC and $0.03{\sim}0.10\;{\mu}g/ml$ by AAS.

  • PDF

Analytical study on nickel content in ceramic, metal and plastic materials (세라믹, 금속 및 플라스틱 소재의 니켈 함유량 분석에 관한 연구)

  • Choi, Zel-Ho
    • Analytical Science and Technology
    • /
    • v.24 no.6
    • /
    • pp.443-450
    • /
    • 2011
  • Quantitative analytical condition for nickel in ceramic, metal and plastic materials using complexation and solvent extraction followed by inductively coupled plasma-atomic emission spectrometry (ICP-AES) and atomic absorption spectrophotometry (AAS) was studied. Ceramic, metal and plastic samples were dissolved by acid digestion. Nickel was determined by ICP-AES and AAS after extraction of Ni $(DMG)_2$ in $CHCl_3$. Recovery efficiency of nickel was satisfactory, and most of matrix elements causing interference could be effectively eliminated by the separation. Nickel in the certified reference materials (BAM-376 and PACS-2) were quantitatively determined without influence of sample matrix.

Determination of Trace Elements in Atmospheric Dust by X-Ray Fluorescence Spectrometry(II) : X-ray Fluorescence Spectrometric Determination of Light Elements (형광 X선에 의한 대기분진중의 미량성분의 측정(II): 대기부유분진 중 경원소의 X-선 형광분석)

  • 이용근;박현미;이동수;이보경
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.9 no.3
    • /
    • pp.247-254
    • /
    • 1993
  • A simple and direct method is developed for the determination of light Elements in atmospheric particulates by X-ray fluorescence spectrometry. Calibration standards for the light elements such as Al, Mg, K, Ca, etc are prepared by filtering real atmospheric particulates over variable time and subsequently standardizing them by Inductively Coupled Plasma-Mass Spectrometry(ICP-MS) or Atomic Absorption Spectrophotometry(AAS) analysis. The validity of this calibration method is tested by analyzing more than 100 aerosol samples, collected at urban(Seoul) and rural(Padori) sites over a two year period with this method and then comparing them with those by other accuracy proven methods such as AAS or ICP-MS: for all metals tested the results showed reasonably good agreements (R $\geq$ 0.95).

  • PDF

The response of plants growing in a landfill in the Philippines towards cadmium and chromium and its implications for future remediation of metal-contaminated soils

  • Nazareno, Patricia Anne G.;Buot, Inocencio E. Jr.
    • Journal of Ecology and Environment
    • /
    • v.38 no.2
    • /
    • pp.123-131
    • /
    • 2015
  • During several visits to the Cebu City landfill in the Philippines, plants were observed growing within the area, including on top of the garbage piles. Studying the response of these plants is important in assessing which can be used in remediating metal contaminated soils. This study aimed to determine whether the plants in the Cebu City landfill excluded or accumulated cadmium (Cd) and chromium (Cr) in the plant tissues. The floristic composition of the landfill was analyzed prior to the sample collection. The samples were acid-digested before the desired elements were measured using atomic absorption spectrophotometry (AAS). The Cd and Cr concentrations in the plant root-zone soil were also measured using AAS. The results indicated that the landfill substrate was generally acidic based on the results of the pH measurement. Of the 32 plant species sampled, Cyperus odoratus showed potential for Cd uptake and internal transfer; Cenchrus echinatus, Vernonia cinerea and Terminalia catappa for Cr uptake, and Cynodon dactylon for Cr internal transfer. The plants in the landfill differed in their response towards the heavy metals. To confirm the behavior of C. odoratus towards Cd, and C. echinatus, C. dactylon, V. cinerea, and T. catappa towards Cr, controlled experiments are recommended, as the plant samples analyzed were collected from the field.

Effect of Ionic Enhancers in the Iontophoresis of Lidocaine (리도케인의 이온토포레시스에 있어서 이온 피부투과증진제의 영향)

  • Kim, Jae-Hong;Shin, Byung-Chul;Choi, Ho-Suk;Kim, Sung-Soo;Park, Young-Do
    • Journal of Pharmaceutical Investigation
    • /
    • v.29 no.3
    • /
    • pp.171-177
    • /
    • 1999
  • Lidocaine(2-Diethylaminoaceto-2', 6'-xylidide) was transdennally delivered by iontophoresis and the effect of enhancer on the delivery of lidocaine was studied. We delivered lidocaine through the skin of hairless mouse using diffusion cell and investigated the effect of the amount of cation salts such as sodium chloride, calcium acetate, zinc acetate and aluminum acetate on the drug delivery. The amounts of transported drugs and adsorbed metal ions were measured by HPLC(High Perfonnance Liquid Chromatography) and AAS(Atomic Absorption Spectrophotometry), respectively. The addition of zinc acetate and aluminum acetate greatly enhanced the delivery of lidocaine. The detection of two metal ions by AAS seemed to support the idea that the astringency effect of these ions were the main reason for the enhancement of transdermal delivery.

  • PDF

Organic Precipitate Flotation of Trace Metallic Elements with Ammonium Pyrrolidinedithiocarbamate (II). Application of Solvent Sublation for Determination of Trace Cd, Co, Cu and Ni in Water Samples

  • 김영상;정용준;최희선
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.1
    • /
    • pp.50-56
    • /
    • 1998
  • A solvent sublation was studied for the determination of trace Cd, Co, Cu and Ni in water samples. Ammonium pyrrolidine dithiocarbamate (APDC) was used as a complexing agent. Experimental conditions such as pH of solution, amounts of APDC, the type and amount of surfactant, the type of solvent, etc. were optimized for the effective sublation of analytes. After metal-PDC complexes were formed in sample solutions of pH 2.5, the precipitate-type complexes were floated in a flotation cell with an aid of sodium lauryl sulfate as a surfactant and by bubbling with nitrogen gas. The precipitates were dissolved and separated into the surface layer of methyl iso-butyl ketone (MIBK). The analytes preconcentrated were determined by a graphite furnace atomic absorption spectrophotometry (GF-AAS). Extractability of each element was 88% for Cd(Ⅱ), 86% for Co(Ⅱ), 95% for Cu(Ⅱ) and 76% for Ni(Ⅱ), respectively. And this procedure was applied to the analysis of real samples. From the recoveries of more than 92%, it was concluded that this method could be simple and applicable for the determination of trace elements in various water samples of a large volume.