• Title/Summary/Keyword: AA1050

Search Result 54, Processing Time 0.023 seconds

Physical Properties of the Langmuir-Blodgett Films Layered with Octadecylviologen-TCNQ (Octadecylviologen-TCNQ LB 막의 물리적 특성)

  • 신동명;박제상;강도열
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1995.05a
    • /
    • pp.77-80
    • /
    • 1995
  • Enhancing the electrical conductivity of the ultrathin organic films using Langmuir-Blodget technique is important step for the developement of molecular electronic device. The Octadecylviologen-TCNQ was synthesized with Octadecylviologen-Bromide an Lithium TCNQ Sine Octadecylviologen-TCNQ has two TCNQ snion radicals, the conductivity of LB film is expected to increase. The $\pi$-A isotherm showed that the limiting area was 150${\AA}$$\^$2/ molecule and the silid-like transition surface pressure was 25 mN/m. The electronic transition of the TNCNQ anion radical was observed at 400 nm. Intermolecular charge transfer absorption was observed at 600nm and 850~1050 nm which ay resulted from the TCNQ anion radical dimer formation. The electrical conductivity of the viologen -TCNQ LB film was 10$\^$-6/cm This values was 100 times higher than that of the quinolinium-TCNQ and pyridinium-TCNQ LB films.

  • PDF

Growth and Properties of Ultra-thin SiO2 Films by Rapid Thermal Dry Oxidation Technique (급속 건식 열산화 방법에 의한 초박막 SiO2의 성장과 특성)

  • 정상현;김광호;김용성;이수홍
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.1
    • /
    • pp.21-26
    • /
    • 2004
  • Ultra-thin silicon dioxides were grown on p-type(100) oriented silicon employing rapid thermal dry oxidation technique at the temperature range of 850∼1050 $^{\circ}C$. The growth rate of the ultra-thin film was fitted well with tile model which was proposed recently by da Silva & Stosic. The capacitance-voltage, current-voltage, characteristics were used to study the electrical properties of these thin oxides. The minimum interface state density around the midgap of the MOS capacitor having oxide thickness of 111.6 $\AA$ derived from the C-V curve was ranged from 6 to 10${\times}$10$^{10}$ /$\textrm{cm}^2$eV.

Evolution of Strain States and Textures During Symmetrical/Asymmetrical Cold Rolling (냉간 대칭/비대칭 압연시 압연변형율 상태와 집합조직의 형성)

  • Huh Moo-Young;Lee Jae-Pil;Lee Jae-Hyup
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.08a
    • /
    • pp.19-24
    • /
    • 2004
  • Symmetrical and asymmetrical rolling was performed in AA 1050 sheets. Asymmetrical rolling was carried out by using different roll velocities of upper and lower rolls. The effect of the reduction per rolling pass on the formation of textures and microstructures during symmetrical and asymmetrical rolling was studied. In order to intensify the shear deformation, symmetrical and asymmetrical rolling was carried out without lubrication. The strain states associated with rolling were investigated by simulations with the finite element method (FEM). A fairly homogeneous residual shear strain throughout the sheet thickness was observed after asymmetrical rolling. Symmetrical rolling with a high friction gave rise to a strong net shear strain gradient in the sheet thickness.

  • PDF

A Study on the Thick GaAN Properties (후막 GaN특성에 관한 연구)

  • 송복식;정성훈;김영호;홍필영;문동찬;김선태
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.05a
    • /
    • pp.19-22
    • /
    • 1996
  • GaN films were prepared on Al$_2$O$_3$(1120) substrates by hydride vapor phase epitaxy (HVPE) with HCl-NH$_3$-N$_2$ gas system. The growth rate was increased with increasing the substrate temperature below 1050$^{\circ}C$ and decreased over the temperature, increased with growth time. The X-ray diffraction patterns showed only (0002) GaN peak. The UV-Visible Spectrophotometer showed a good optical absorption and fundamental absorption occurred at 3700${\AA}$.

  • PDF

Formation of MOCVD TiN from a New Precursor (새로운 증착원으로 형성된 MOCVD TiN에 관한 연구)

  • Choe, Jeong-Hwan;Lee, Jae-Gap;Kim, Ji-Yong;Lee, Eun-Gu;Hong, Hae-Nam;Sin, Hyeon-Guk
    • Korean Journal of Materials Research
    • /
    • v.9 no.3
    • /
    • pp.244-250
    • /
    • 1999
  • MOCVD TiN films were prepared from a new TiN precursor, tetrakis(etylmethylamino)titanium (TEMAT) and ammonia. Deposition of TiN films from a single precursor, TEMA T yielded the growth rates of $70 to 1050\AA$/min, depending on the deposition temperature. Furthermore, the excellent bottom coverage of -90% over $0.35\mu\textrm{m}$ contacts was obtained at $275^{\circ}C$. The addition of ammonia to TEMA T lowered the resistivity of as- deposited TiN film to ~ $800\mu\omega-cm$ from $3500~6000\mu\omega-cm$ and improved the stability of TiN film in air. Examination of the films by Auger electron spectroscopy(AES) showed that the oxygen and carbon contents decreased with the addition of ammonia. However, increasing ammonia flow rate decreased the bottom coverage of TiN films over $0.5\mu\textrm{m}$ contacts, probably due to the high sticking coefficient of intermediate species produced from the gas phase reaction of TEMA T and ammonia. Based on the byproduct gases detected by the quadrupole mass spectrometer (QMS), the transammination reaction was proposed to be responsible for TiN deposition. In addition, XPS analysis revealed that the carbon in the films made from TEMA T and ammonia was metallic carbon, suggesting that $\beta$-hydrogen activation process occurs competitively with the transammination reaction.

  • PDF

Analysis of electron mobility in LDD region of NMOSFET (NMOSFET에서 LDD 영역의 전자 이동도 해석)

  • 이상기;황현상;안재경;정주영;어영선;권오경;이창효
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.10
    • /
    • pp.123-129
    • /
    • 1996
  • LDD structure is widely accepted in fabricating short channel MOSFETs due to reduced short channel effect originated form lower drain edge electric field. However, modeling of the LDD device is troublesome because the analysis methods of LDD region known are either too complicated or inaccurate. To solve the problem, this paper presents a nonlinear resistance model for the LDD region based on teh fact that the electron mobility changes with positive gate bias because accumulation layer of electrons is formed at the surface of the LDD region. To prove the usefulness of the model, single source/drain and LDD nMOSFETs were fabricated with 0.35$\mu$m CMOS technolgoy. For the fabricated devices we have measured I$_{ds}$-V$_{gs}$ characteristics and compare them to the modeling resutls. First of all, we calculated channel and LDD region mobility from I$_{ds}$-V$_{gs}$ characteristics of 1050$\AA$ sidewall, 5$\mu$m channel length LDD NMOSFET. Then we MOSFET and found good agreement with experiments. Next, we use calculated channel and LDD region mobility to model I$_{ds}$-V$_{gs}$ characteristics of LDD mMOSFET with 1400 and 1750$\AA$ sidewall and 5$\mu$m channel length and obtained good agreement with experiment. The single source/drain device characteristic modeling results indicates that the cahnnel mobility obtained form our model in LDD device is accurate. In the meantime, we found that the LDD region mobility is governed by phonon and surface roughness scattering from electric field dependence of the mobility. The proposed model is useful in device and circuit simulation because it can model LDD device successfully even though it is mathematically simple.

  • PDF

Split Die Design for ECAP with Lower Loads (등통로각압축 공정용 저하중 분리형 금형 설계)

  • Jin, Young-Gwan;Kang, Seong-Hoon;Son, Il-Heon;Im, Yong-Taek
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.3
    • /
    • pp.217-222
    • /
    • 2008
  • Equal channel angular pressing (ECAP) is one of the effective methods to produce bulk-nano materials by accumulating plastic strain into the workpiece without changing its cross-sectional shape in the multi-pass processing. However, the forming load becomes higher for manufacturing large specimens using conventional solid or split dies because of friction, flash formation, and usage of dummy specimen. In the present investigation, better split die was designed to reduce the forming loads and improve the geometrical accuracy of the specimen in the multi-pass ECAP. The new die exit channel was also designed to reduce the friction effect. Experiments with AA1050 specimens with a square cross-section were carried out to examine the design goal using the proposed split dies for routes A and C up to four passes. The numerical forming simulations were used to determine the effective geometry of various die models in the present work.

Interface effects on the annealing behavior of tungsten silicide (텅스텐 실리사이드 열처리 거동에 미치는 계면 효과)

  • 진원화;오상헌;이재갑;임인곤;김근호;이은구;홍해남
    • Journal of the Korean institute of surface engineering
    • /
    • v.30 no.6
    • /
    • pp.374-381
    • /
    • 1997
  • We have studied the effect of the interface between tungsten silicide and polysilicon the silicide reaction. The results showed that the cleaning of the silicon surface prior to the deposition of tungsten silicide affected the interface properties, thereby leading to the difference in the resistivity and surface morhpology of tungsten silicide. Compared with HF cleaning, the use of SCl cleaning yielded higher resistivity of tungsten silicide at the low anneal temperature (up to $900^{\circ}C$). However, furtherature to $1000^{\circ}C$ reduced the resistivity significantly, similar to that obtained with HF cleaning. It was also observed that the annealing of WSix/HF-cleaned poly-si allowed the formation of bucking weve (partially decohesion area) on the surface. In contrast, the use of SCl celaning did not produce the buckling waves on the surface. Also the presence of 200$\AA$ -thick TiW between tungsten silicide and HF-cleaned poly-Si effectively prevented the formation of the waves. However, high-temperature annealing of WSix/200A-TiW/Poly-Si allowed the excess silicon in tungsten silicide to precipitate inside the silcide, causing the slight increase of the resistivity after annealing at $1050^{\circ}C$.

  • PDF

The Pigrailing and The Loss Analysis of low loss LiNbO$_3$ Optical Waveguide with Fiber-to-fiber Insetion Loss<6dB (Total Fiber-to-fiber Insertion Loss가 <6dB 인 Ti:$LiNbO_3$ 과도파로 Pigtailing 및 손실분석)

  • 김성구;박계춘;조재철
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.7
    • /
    • pp.557-564
    • /
    • 1998
  • A low loss x-cut $LiNbO_3$optical waveguide was fabricated by Yi in-diffusion, and the properties of guided-mode and the total insertion loss of the pigtailed waveguide with polarization maintaining fiber(PMF) were measured at optical wavelength 1550nm. for forming the waveguides, the parameters of diffusion, Ti thickness, waveguide line-width, length, diffusion temperature, time and atmosphere were set $1400{\AA}$, $8{\mu}m$, 3.3cm, $1050^{\circ}C$, 8 hours and wet bubbled oxygen, respectively. And then after the polishing and piatailing, it showed that the total insertion loss was -4.1dB for TM mode, -5.5dB for TE mode, and mode size, that is, the horizontal/ vertical size were $13.8{\mu}m/18{\mu}m$ for TM mode, $9.6{\mu}m/6.5{\mu}m$ for TE mode.

  • PDF

Selective Si Epitaxial Growth by Control of Hydrogen Atmosphere During Heating-up (승온중 수소 분위기 제어에 의한 선택적 Si 에피텍시 성장)

  • Son, Yong-Hun;Park, Seong-Gye;Kim, Sang-Hun;Nam, Seung-Ui;Kim, Hyeong-Jun
    • Korean Journal of Materials Research
    • /
    • v.12 no.5
    • /
    • pp.363-368
    • /
    • 2002
  • we proposed the use of $Si_2H_ 6/H_2$ chemistry for selective silicon epitaxy growth by low-pressure chemical vapor deposition(LPCVD) in the temperature range $600~710^{\circ}C$ under an ultraclean environment. As a result of ultraclean processing, an incubation period of Si deposition only on $SiO_2$ was found, and low temperature epitaxy selective deposition on Si was achieved without addition of HCI. Total gas flow rate and deposition pressure were 16.6sccm and 3.5mtorr, respectively. In this condition, we selectively obtained high-quality epitaxial Si layers of the 350~1050$\AA$ thickness. In older to extend the selectivity, we kept high pressure $H_2$ environment without $Si_2H_6$ gas for few minutes after first incubation period and then we conformed the existence of second incubation period.