• Title/Summary/Keyword: A2058

Search Result 64, Processing Time 0.026 seconds

Cloning of tlrD, 23S rRNA Monomethyltransferase Gene, Overexpression in Eschepichia coli and Its Activity (235 rRNA Monomethyltransferase인 tlrD의 클로닝, 이의 대장균에서 대량생산과 활성 검색)

  • Jin, Hyung-Jong
    • Korean Journal of Microbiology
    • /
    • v.43 no.3
    • /
    • pp.166-172
    • /
    • 2007
  • ERM proteins transfer the methyl group to $A_{2058}$ in 23S rRNA, which reduces the affinity of MLS (macrolide-lincosamide-streptogramin B) antibiotics to 23S rRNA, thereby confer the antibiotic resistance on micro-organisms ranging from antibiotic producers to pathogens and are classified into monomethyltransferase and dimethyltransferase. To investigate the differences between mono- and dimethyltransferase, tirD, a representative monomethylase gene was cloned in Escherichia coli from Streptomyces fradiae which contains ermSF, dimethylase gene as well to overexpress the TlrD for the first time. T7 promoter driven expression system successfully overexpress tlrD as a insoluble aggregate at $37^{\circ}C$ accumulating to around 55% of the total cell protein but unlike ErmSF, culturing at temperature as low as $18^{\circ}C$ did not make insoluble aggregate of protein into soluble protein. Coexpression of Thioredoxin and GroESL, chaperone was not helpful in turning into soluble protein either as in case of ErmSF. These results might suggest that differences between mono- and dimethylase could be investigated on the basis of the characteristics of protein structure. However, a very small amount of soluble protein which could not be detected by SDS-PAGE conferred antibiotic resistance on E. coli as in ErmSF which was expected from the activity exerted by monmethylase in a cell.

Functional Role of $^{60}RR^{61}$ in 23S rRNA Methylation, Which is in N-Terminal End Region of ErmSF (ErmSF의 N-Terminal End Region에 존재하는 $^{60}RR^{61}$의 23S rRNA Methylation에서의 역할)

  • Jin, Hyung-Jong
    • Korean Journal of Microbiology
    • /
    • v.44 no.3
    • /
    • pp.193-198
    • /
    • 2008
  • ErmSF is one of the proteins which are produced by Streptomyces fradiae to avoid suicide by its autogenous macrolide antibiotic, tylosin and one of ERM proteins which are responsible for transferring the methyl group to $A_{2058}$ (Escherichia coli coordinate) in 23S rRNA, which reduces the affinity of MLS (macrolide-lincosamide-streptogramin B) antibiotics to 23S rRNA, thereby confers the antibiotic resistance on microorganisms ranging from antibiotic producers to pathogens. ErmSF contains an extra N-terminal end region (NTER), which is unique to ErmSF and 25% of amino acids of which is arginine known well to interact with RNA. Noticeably, arginine is concentrated in $^{58}RARR^{61}$ and functional role of each arginine in this motif was investigated through deletion and site-directed mutagenesis and the activity of mutant proteins in cell R60 and R61 was found to play an important role in enzyme activity through the study with deletion mutant up to R60 and R61. With the site-directed mutagenesis using deletion mutant of 1 to 59 (R60A, R61A, and RR60, 61AA), R60 was found more important than R61 but R61 was necessary for the proper activity of R60 and vice versa. And these amino acids were presumed to assume a secondary structure of $\alpha$-helix.

Isolation of Mycoplasma pneumoniae and Antimicrobial Susceptibilities of the Isolates(III) (Mycoplasma pneumoniae의 분리 및 항생제 감수성 검사(III))

  • Chang Myung-Woong;Kim Kwang-Hyuk;Park In-Dal;Song Gap-Young;Kim Sung-Won;Lee Eun-young;Kim Moon-Chan;Cho Myung-Hoon;Kim Kyu-Earn;Choi Choong-Eon;Park Seon Yeong;Jo Hyeon Jang
    • Journal of Life Science
    • /
    • v.15 no.3 s.70
    • /
    • pp.479-485
    • /
    • 2005
  • The 994 throat swabs obtained from 688 adults and 306 children patients with respiratory diseases were examined for Mycoplasma pneumoniae infection by culture method. Antimicrobial susceptibilities of the resulting 123 M. pneumoniae isolates were evaluated by testing minimum inhibitory concentrations (MICs) of erythromycin, minocycline, tetracycline, josamycin, sparfloxacin, ofloxacin, and ciprofloxacin by a broth micro-dilution method. The erythromycin resistant strains of M. pneumoniae was determined above $1.0{\mu}g/ml$ of MIC for erythromycin. The erythromycin resistant strains of M. pneumoniae was confirmed resistant gene mutation of the portions of genes 23S rRNA (domain II and V), and ribosomal protein 14 and L22 by PCR amplified and their nucleotide sequenses were compared to those of the susceptible strain M129. The isolation rate of M. pneumoniae was $12.9\%$ (89/688) for the adults and $11.1\%$ (34/306) for the children. The $MICs_{90}$ of the M. pneumoniae isolates were $0.12{\mu}g/ml$ for minocycline, $0.25{\mu}g/ml$ for sparfloxacin, $0.5{\mu}g/ml$ for ciprofloxacin, ofloxacin, and tetracycline, respectively, and $2.0{\mu}g/ml$ for josamycin and erythromycin, respectively. The isolation rate of erythromycin resistant M. pneumoniae from patients was $49.4\%\;(44/89)$ for the adults, $47.1\%\;(16/34)$ for children, and $48.8\%\;(60/123)$ for the total. No mutation could be detected in the ribosomal protein L22 region, but all strains were mutated in the ribosomal protein L4 as two point mutation M144V. Two point mutations in domain V of 23S rRNA were selected in the presense of erythromycin resistant M. pneumoniae isolates, such as one strain was G2057C mutant, two strains were A2059C mutants, three strains were C2611G mutants, four strains were A2058C mutants, five strains were A2058T mutants, twenty strains were A2059G mutants, and twenty-five strains were A2058G mutants, respectively. These results show that erythromycin was not the most active compound against M. pneumoniae infection in Korea and clinical studies of macrolides in human patients are demanded.

Effect of Truncation of 38 Amino Acids in N-terminal Region of ErmSF, a MLSB Antibiotic Resistance Factor Protein, on Enzymatic Activity (MLSB 항생제 내성인자인 ErmSF의 N-terminal 38개 아미노산 제거가 항생제 내성 효소활성에 미치는 영향)

  • Lee, Hak Jin;Jin, Hyung Jong
    • Korean Journal of Microbiology
    • /
    • v.50 no.3
    • /
    • pp.239-244
    • /
    • 2014
  • ErmSF is one of the four antibiotic resistance factor proteins expressed by Streptomyces fradiae, antibiotic tylosin producer, which renders $MLS_B$ (macrolide-lincosamide-streptogramin B) antibiotic resistance through dimethylating A2058 of 23S rRNA, thereby reducing the affinity of antibiotic to ribosome. Unlike other Erm proteins, ErmSF harbors long N-terminal end region. To investigate its role in enzyme activity, mutant ErmSF deleted of 1-38 amino acids was overexpressed and activity in vivo and in vitro was observed. In vitro enzymatic assay showed that mutant protein exhibited reduced activity by 20% compared to the wild type enzyme. Due to the reduced activity of the mutant protein, cells expressing mutant protein showed weaker resistance to erythromycin than cells with wild type enzyme. Presumably, the decrease in enzyme activity was caused by the hindrance in substrate binding and (or) product release, not by defect in the methyl group transfer occurred in active site.

Impact of Climate Change on Fungicide Spraying for Anthracnose on Hot Pepper in Korea During 2011-2100 (한국의 2011-2100년 기후변화가 고추 탄저병 살균제 살포에 미치는 영향)

  • Shin, Jeong-Wook;Yun, Sung-Chul
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.13 no.1
    • /
    • pp.10-19
    • /
    • 2011
  • In order to predict the risk of anthracnose on hot pepper in the future, the projected climate data from SRES A1B scenario in South Korea were used with the modified anthracnose model to calculate Infection Risk (IR), which was to estimate the number of fungicide sprays. Based on daily temperature and precipitation, the anthracnose model resulted in an empirical relationship that IR = (Daily temperature - $16^{\circ}C$) ${\times}$ 0.07 + (Daily precipitation ${\times}$ 0.11). For 135 locations in South Korea, the total number of fungicide sprays needed from 2011 to 2100 was 12,150, indicating a complicated change with an overall increase in anthracnose development in all locations until 2100. In particular, radical changes in anthracnose development were predicted at Yeongdeok, Yeongyang, and Uiseong, whereas gradual changes were predicted at Heongsung, Hamyang and Taean. The eastern counties of Gyeongbuk Province, which ar the major plantation area in these days, would be the place with the highest disease pressure in the future. In addition, the years of 2058, 61, 78 and 2096 will be most severe, requiring 8-11 times of fungicide spraying. The GIS maps show that the mountain areas of Jeonbuk and Chungbuk Province would have the least disease pressure of anthracnose in the future.

In vitro activity comparison of Erm proteins from Firmicutes and Actinobacteria (Firmicutes와 Actinobacteria에 속하는 세균들의 Erm 단백질 in vitro 활성 비교)

  • Jin, Hyung Jong
    • Korean Journal of Microbiology
    • /
    • v.52 no.3
    • /
    • pp.269-277
    • /
    • 2016
  • Erm proteins methylate the specific adenine residue ($A_{2058}$, E. coli numbering) on 23S rRNA to confer the $MLS_B$ (macrolidelincosamide-streptogramin B) antibiotic resistance on a variety of microorganisms ranging from antibiotic producers to pathogens. When phylogenetic tree is constructed, two main clusters come out forming each cluster of Actinobacteria and Firmicutes. Two representative Erm proteins from each cluster were selected and their in vitro methylation activities were compared. ErmS and ErmE from Actinobacteria cluster exhibited much higher activities than ErmB and ErmC' from Firmicutes: 9 fold difference when ErmC' and ErmE were compared and 13 fold between ErmS and ErmB. Most of the difference was observed and presumed to be caused by N-terminal and C-terminal extra region from ErmS and ErmE, respectively because NT59TE in which N-terminal end 59 amino acids was truncated from wild type ErmS exhibited only 22.5% of wild type ErmS activity. Meanwhile, even NT59TE showed three and 2.2 times more activity when it was compared to ErmB and C, respectively, suggesting core region from antibiotic producers contains extra structure enabling higher activity. This is suggested to be possible through the extra region of 197RWS199 (from both ErmS and ErmE), 261GVGGSLY267 (from ErmS), and 261GVGGNIQ267 (from ErmE) and 291SVV293 (from ErmS) and 291GAV293 (from ErmE) by multiple sequence alignment.

Functional Role of Peptide Segment Containing 1-25 Amino Acids in N-terminal End Region of ErmSF (ErmSF에서 특이적으로 발견되는 N-terminal end region에 존재하는 1-25번째 아미노산을 함유하는 peptide segment의 효소 활성에서의 역할)

  • Jin, Hyung-Jong
    • Korean Journal of Microbiology
    • /
    • v.42 no.3
    • /
    • pp.165-171
    • /
    • 2006
  • ERM proteins transfer the methyl group to $A_{2058}$ in 23S rRNA to confer the resistance to MLS (macrolide-lincosamide-streptogramin B) antibiotics on microorganism ranging from antibiotic producers to pathogens. To define the functional role of peptide segment encompassing amino acid residues 1 to 25 in NTER (N-terminal end region) of ErmSF, one of the ERM proteins, DNA fragment encoding mutant protein deprived of that peptide was cloned and overexpressed in E. coli to obtain a purified soluble form protein to the apparent homogeneity in the yield of 12.65 mg per liter of culture. The in vitro activity of mutant protein was found to be 85% compared to wild type ErmSF, suggesting that this peptide interact with substrate to affect the enzyme activity. This diminished activity of mutant protein caused the delayed expression of antibiotic resistance in vivo, that at fIrst cells expressing mutant protein showed the retarded growth due to the antibiotic action but with time cells inhibited by antibiotic gradually recovered the viability to exert the resistance to the same extent as those with wild type protein.

The TNF Receptor Expressions in Cancer Cells Transfected with TNF-$\alpha$ cDNA Using Retroviral Vector (Retroviral vector를 이용한 종양괴사인자 (TNF-$\alpha$) 유전자 이입 암세포에서 종양괴사인자 수용체의 발현)

  • Lee, Hyuk-Pyo;Yoo, Chul-Gyu;Kim, Young-Whan;Shim, Young-Soo;Han, Sung-Koo
    • Tuberculosis and Respiratory Diseases
    • /
    • v.44 no.6
    • /
    • pp.1271-1284
    • /
    • 1997
  • Background : Tumor necrosis factor(TNF) has been considered as an important candidate for cancer gene therapy based on its potent anti-tumor activity. However, since the efficiency of current techniques of gene transfer is not satisfactory, the majority of current protocols is aiming the in vitro gene transfer to cancer cells and re-introducing genetically modified cancer cells to host. In the previous study, it was shown that TNF-sensitive cancer cells transfected with TNF-$\alpha$ cDNA would become highly resistant to TNF, and the probability was shown that the acquired resistance to TNF might be associated with synthesis of some protective protein. Understanding the mechanisms of TNF-resistance in TNF-$\alpha$ cDNA transfected cancer cells would be an important step for improving the efficacy of cancer gene therapy as well as for better understandings of tumor biology. This study was designed to evaluate whether the levels of TNF receptor mRNA expression and soluble TNF receptor release from cancer cells are changed after TNF-$\alpha$ cDNA transfection. Method : We transfected TNF-$\alpha$ c-DNA to WEHI164(murine fibrosarcoma cell line), NCI-H2058(human mesothelioma cell line), A549(human non-small cell lung cancer cell line), ME180(human cervix cancer cell line) cells using retroviral vector(pLT12SN(TNF)) and confirm the expression of TNF with PCR, EUSA, MTT assay. Then we determined the TNF resistance of TNF-$\alpha$ cDNA transfected cells(WEHI164-TNF, NCIH2058-TNF, A549-TNF, ME180-TNF) and evaluated the TNF receptor mRNA expression with Northern blot analysis and soluble TNF receptor release with EUSA. Results : The TNF receptor mRNA expressions of parental cells and genetically modified cells were not significantly different. The soluble TNF receptor levels of media from genetically modified cells were lower than those from parental cells. Conclusion : The acquired resistance to TNF after TNF-$\alpha$ cDNA transfection may not be associated with the change in the TNF receptor and the soluble TNF receptor expression.

  • PDF

Performance of Liquid-Cooled Cold Plates for Multiple Heat Sources in a Humanoid Robot (인간형 로봇 내부의 다중 열원에 대한 수냉식 냉각판의 성능)

  • Karng, Sarng-Woo;Kim, Seo-Young;Moon, Jong-Min;Hwang, Kyu-Dae;Rhee, Gwang-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2053-2058
    • /
    • 2008
  • It was investigated thermal performances on two array types of a serial circulation and a two-way parallel circulation for six water-cooled cold plates covered with non-metallic material (polycarbonate, PC) to reduce weight of the cooling devices for humanoid robot cooling. Six cold plates attached on $10{\times}10\;mm^2$ copper base : $0.5{\times}0.5\;mm^2$ pin-finned surfaces of 1.5 mm high with 0.5 mm array spacing, was mounted on six copper heating blocks with isothermal conditions of $50{\sim}90^{\circ}C$, respectively. In order to compare thermal characteristics according to two circulation types, the surface temperatures of heating blocks and the cooling water temperatures at inlets and outlets of cold plates were measured. From the results, it was found that a two-way parallel circulation was better performance than a serial circulation in terms of total thermal resistance, total heat transfer rate, and surface temperature rises from $1^{st}$ heating block to last one for six multiple cold plates.

  • PDF

Investigation of Large-scale Transmission Tower Grounding Grid with High Amplitude and Uniform Flowing Impulse Current

  • Yang, Shuai;Huang, Jiarui;Wei, Shaodong;Zhou, Wenjun
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.5
    • /
    • pp.2050-2058
    • /
    • 2018
  • Impulse characteristic of transmission tower grounding grid is needed for lightning protection of transmission line. This paper describes an outdoor experimental test facility established for large-scale grounding grid of transmission tower, made up of four impulse current generators and a circle current return electrode. The amplitude of impulse current is up to 100 kA. The results of the CDEGS simulation and GPR measurement reveal the uniform current distribution in the test arrangement. An impulse test for a square electrode with extended conductors is carried out in condition of three current waveforms with different amplitude. Based on the electrical network model and iterative algorithm method, a calculation model is proposed to simulate the impulse characteristic of large-scale grounding grid considering soil ionization. The curve of impulse resistance against the current amplitude shows the soil ionization both from the simulation and test. Deviation between the simulation and test result is less than 15%.