Browse > Article

Functional Role of Peptide Segment Containing 1-25 Amino Acids in N-terminal End Region of ErmSF  

Jin, Hyung-Jong (Department of Bioscience and Biotechnology, College of Natural Science, University)
Publication Information
Korean Journal of Microbiology / v.42, no.3, 2006 , pp. 165-171 More about this Journal
Abstract
ERM proteins transfer the methyl group to $A_{2058}$ in 23S rRNA to confer the resistance to MLS (macrolide-lincosamide-streptogramin B) antibiotics on microorganism ranging from antibiotic producers to pathogens. To define the functional role of peptide segment encompassing amino acid residues 1 to 25 in NTER (N-terminal end region) of ErmSF, one of the ERM proteins, DNA fragment encoding mutant protein deprived of that peptide was cloned and overexpressed in E. coli to obtain a purified soluble form protein to the apparent homogeneity in the yield of 12.65 mg per liter of culture. The in vitro activity of mutant protein was found to be 85% compared to wild type ErmSF, suggesting that this peptide interact with substrate to affect the enzyme activity. This diminished activity of mutant protein caused the delayed expression of antibiotic resistance in vivo, that at fIrst cells expressing mutant protein showed the retarded growth due to the antibiotic action but with time cells inhibited by antibiotic gradually recovered the viability to exert the resistance to the same extent as those with wild type protein.
Keywords
ErmSF; in vitro activity; in vivo activity; MLS (macrolide- incosamide-streptogramin B) antibiotic resistance factor protein; N-terminal end region; 23S rRNA dimethylation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Birmingham, V.A., K.L. Cox, J.L. Larson, S.E. Fishman, C.L. Hershberger, and E.T. Seno. 1986. Cloning and expression of a tylosin resistance gene from a tylosin-producing strain of Streptomyces fradiae. Mol. Gen. Genet. 204, 532-539   DOI
2 Kovalic, D., R.B. Giannattasio, H.J. Jin, and B. Weisblum. 1994. 23S rRNA Domain V, a fragment that can be specifically methylated in vitro by the ErmSF (TlrA) methyltransferase. J. Bacteriol. 176, 6992-6998   DOI
3 Roberts, M.C. 2004. Resistance to macrolide, lincosamide, streptogramin, ketolide, and oxazolidinone antibiotics. Mol. Biotechnol. 28, 47-62   DOI   ScienceOn
4 Vester, B. and S. Douthewaite. 1994. Domain V of 23S rRNA contains all the structural elements necessary for recognition by the ErmE methytransferase. J. Bacteriol. 176, 6999-7004   DOI
5 Xiong, L., Y. Korkhin, and A.S. Mankin. 2005. Binding site of the bridged macrolides in the Escherichia coli ribosome. Antimicrob. Agents Chemother. 49, 281-288   DOI   ScienceOn
6 Gandecha, A.R. and E. Cundliffe. 1996. Molecular analysis of tlrD, an MLS resistance determinant from tylosin producer, Streptomyces fradiae. Gene 180, 173-176   DOI   ScienceOn
7 Shortridge, V.D., G.V. Doer, A.B. Brueggemann, J.M. Beyer, and R.K. Flamm. 1999. Prevalence of macrolide resistance mechanisms in Streptococcus pneumoniae isolates from a multicenter antibiotic resistance surveillance study conducted in the United States in 1994-1995. Clin. Infect. Dis. 29. 1186-1188   DOI   ScienceOn
8 Weisblum, B. 1995. Erythromycin resistance by ribosome modification. Antimicrob. Agents Chemother. 39, 577-585   DOI   ScienceOn
9 Liu, M. and S. Douthwaite. 2002. Methylation at nucleotide G745 or G748 in 23S rRNA distinguishes Gram-negative from Grampositive bacteria. Mol. Microbiol. 44, 195-204   DOI   ScienceOn
10 Poehlsgaard, J. and S. Douthwaite. 2005. The bacterial ribosome as a target for antibiotics. Nat. Rev. Microbiol. 3, 870-81   DOI   ScienceOn
11 Liu, M., F. Kirpekar, G.P. Van Wezel, and S. Douthwaite. 2000. The tylosin resistance gene tlrB of Streptomyces fradiae encodes a methyltransferase that targets G748 in 23S rRNA. Mol. Microbiol. 37, 811-20   DOI   ScienceOn
12 Roberts, M.C., J. Sutcliffe, P. Courvalin, L.B. Jensen, J. Rood, and H. Seppala. 1999. Nomenclature for macrolide and macrolide-lincomycin- streptogramin B resistance determinants. Antimicrob. Agents Chemother. 43, 2823-2830
13 Zalacain, M. and E. Cundliffe. 1991. Cloning of tlrD, a fourth resistance gene, from the tylosin producer, Streptomyces fradiae. Gene 97, 137-142   DOI   ScienceOn
14 Rosteck Jr., R.R., P.A. Reynolds, and C.L. Hershberger. 1991. Homology between proteins controlling Streptomyces fradiaetylosin resistance and ATP-binding transport. Gene 102, 27-32   DOI   ScienceOn
15 Jin, H.J and Y.D. Yang. 2002. Purification and biochemical characterization of the ErmSF macrolide-lincosamide-streptogramin B resistance factor protein expressed as a hexahistidine-tagged protein in Escherichia coli. Protein Expr. Purif. 25, 149-59   DOI   ScienceOn
16 Cundliffe, E. 1989. How antibiotic-producing organisms avoid suicide. Annu. Rev. Microbiol. 43, 207-223   DOI   ScienceOn
17 'Frontiers in Biotechnology : Antibiotic Resistance' 1994. Science 264, 317-476
18 Skinner, R., E. Cundliffe, and F.J. Schmidt. 1983. Site for Action of a ribosomal RNA methylase responsible for resistance to erythromycin and other antibiotics. J. Biol. Chem. 258, 12702-12706
19 진형종. 2001. MLS (macrolide-lincosamide-streptogramin B) 항생제 내성인자 단백질인 ErmSF의 domain 발현. Kor. J. Microbiol. 37, 245-252
20 Lai, C.J., B. Weisblum, S.R. Fahnestock, and M. Nomura. 1973. Alteration of 23S ribosomal RNA and erythromycin-induced resisitance to lincomycin and spiramycin in Staphylococcus aureus. J. Mol. Biol. 74, 67-72   DOI
21 Jin, H.J. 1999. ermSF, a ribosomal RNA adenine N6-methyltransferase gene from Streptomyces fradiae, confers MLS(macrolidelincosamide- streptogramin B) resistance to E. coli when it is expressed. Mol. Cells 9, 252-25
22 Kovalic, D., J.H. Kwak, and B. Weisblum. 1991. General method for direct cloning of DNA fragments generated by the polymerase chain reaction. Nucleic Acid Res. 19, 4650
23 Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T. Nature. 227, 680-685   DOI   ScienceOn
24 Zalacain, M. and E. Cundliffe. 1989. Methylation of 23S rRNA by tlrA(ermSF), a tylosin resistance determinant from Streptomyces fradiae. J. Bacteriol. 171, 4254-4260   DOI